Skip to main content

Advertisement

Log in

Inhibition of cellular FLICE-like inhibitory protein abolishes insensitivity to interferon-α and death receptor stimulation in resistant variants of the human U937 cell line

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Type I interferons constitute a family of pleiotropic cytokines that have a key role in both adaptive and innate immunity. The interferon signalling pathways mediate transcriptional regulation of hundreds of genes, which result in mRNA degradation, decreased protein synthesis, cell cycle inhibition and induction of apoptosis. To elucidate regulatory networks important for interferon induced cell death, we generated interferon resistant U937 cells by selection in progressively increasing concentrations of interferon-α (IFN-α). The results show that IFN-α activates the death receptor signalling pathway and that IFN resistance was associated with cross-resistance to several death receptor ligands in a manner similar to previously described Fas resistant U937 cell lines. Increased expression of the long splice variant of the cellular FLICE-like inhibitor protein (cFLIP-L) was associated with the resistance to death receptor and IFN-α stimulation. Accordingly, inhibition of cFLIP-L expression with cycloheximide or through cFLIP short harpin RNA interference restored sensitivity to Fas and/or IFN-α. Thus, we now show that selection for interferon resistance can generate cells with increased expression of cFLIP, which protects the cells from both IFN-α and death receptor mediated apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

IFN:

Interferon

cFLIP:

Cellular FLICE-like inhibitory protein

TNF-α:

Tumour necrosis factor-alpha

IFNres:

Interferon resistant cells

ISGs:

Interferon stimulated genes

JAK:

Janus-kinase

STAT:

Signal transducers and activators of transcription

qRT-PCR:

Quantitative real-time PCR

shRNA:

Short hairpin RNA

α-Fas:

Anti-Fas agonistic antibody

References

  1. Borden EC, Sen GC, Uze G et al (2007) Interferons at age 50: past, current and future impact on biomedicine. Nat Rev Drug Discov 6:975–990

    Article  PubMed  CAS  Google Scholar 

  2. Kotenko SV, Langer JA (2004) Full house: 12 receptors for 27 cytokines. Int Immunopharmacol 4:593–608

    Article  PubMed  CAS  Google Scholar 

  3. Randall RE, Goodbourn S (2008) Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J Gen Virol 89:1–47

    Article  PubMed  CAS  Google Scholar 

  4. Friedman RM (2008) Clinical uses of interferons. Br J Clin Pharmacol 65:158–162

    Article  PubMed  CAS  Google Scholar 

  5. Belardelli F, Ferrantini M, Proietti E, Kirkwood JM (2002) Interferon-alpha in tumor immunity and immunotherapy. Cytokine Growth Factor Rev 13:119–134

    Article  PubMed  CAS  Google Scholar 

  6. Sangfelt, Strander H (2001) Apoptosis and cell growth inhibition as antitumor effector functions of interferons. Med Oncol 18:3–14

    Article  PubMed  CAS  Google Scholar 

  7. de Veer MJ, Holko M, Frevel M et al (2001) Functional classification of interferon-stimulated genes identified using microarrays. J Leukoc Biol 69:912–920

    PubMed  Google Scholar 

  8. Brierley MM, Fish EN (2002) Review: IFN-alpha/beta receptor interactions to biologic outcomes: understanding the circuitry. J Interferon Cytokine Res 22:835–845

    Article  PubMed  CAS  Google Scholar 

  9. Clemens MJ (2003) Interferons and apoptosis. J Interferon Cytokine Res 23:277–292

    Article  PubMed  CAS  Google Scholar 

  10. Fulda S, Debatin KM (2004) Signaling through death receptors in cancer therapy. Curr Opin Pharmacol 4:327–332

    Article  PubMed  CAS  Google Scholar 

  11. Jin Z, El-Deiry WS (2005) Overview of cell death signaling pathways. Cancer Biol Ther 4:139–163

    Article  PubMed  CAS  Google Scholar 

  12. Barnhart BC, Alappat EC, Peter ME (2003) The CD95 type I/type II model. Semin Immunol 15:185–193

    Article  PubMed  CAS  Google Scholar 

  13. Cowling V, Downward J (2002) Caspase-6 is the direct activator of caspase-8 in the cytochrome c-induced apoptosis pathway: absolute requirement for removal of caspase-6 prodomain. Cell Death Differ 9:1046–1056

    Article  PubMed  CAS  Google Scholar 

  14. Chawla-Sarkar M, Lindner DJ, Liu YF et al (2003) Apoptosis and interferons: role of interferon-stimulated genes as mediators of apoptosis. Apoptosis 8:237–249

    Article  PubMed  CAS  Google Scholar 

  15. Pokrovskaja K, Panaretakis T, Grander D (2005) Alternative signaling pathways regulating type I interferon-induced apoptosis. J Interferon Cytokine Res 25:799–810

    Article  PubMed  CAS  Google Scholar 

  16. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  PubMed  CAS  Google Scholar 

  17. Nelson DA, White E (2004) Exploiting different ways to die. Genes Dev 18:1223–1226

    Article  PubMed  CAS  Google Scholar 

  18. Blomberg J, Ruuth K, Jacobsson M, Hoglund A, Nilsson JA, Lundgren E (2009) Reduced FAS transcription in clones of U937 cells that have acquired resistance to Fas-induced apoptosis. FEBS J 276:497–508

    Article  PubMed  CAS  Google Scholar 

  19. Blomberg J, Ruuth K, Santos D, Lundgren E (2008) Acquired resistance to Fas/CD95 ligation in U937 cells is associated with multiple molecular mechanisms. Anticancer Res 28:593–599

    PubMed  CAS  Google Scholar 

  20. Ka H, Hunt JS (2006) FLICE-inhibitory protein: expression in early and late gestation human placentas. Placenta 27:626–634

    Article  PubMed  CAS  Google Scholar 

  21. Mirandola P, Ponti C, Gobbi G et al (2004) Activated human NK and CD8+ T cells express both TNF-related apoptosis-inducing ligand (TRAIL) and TRAIL receptors but are resistant to TRAIL-mediated cytotoxicity. Blood 104:2418–2424

    Article  PubMed  CAS  Google Scholar 

  22. Thornton AM, Ogryzko VV, Dent A et al (1996) A dominant negative mutant of an IFN regulatory factor family protein inhibits both type I and type II IFN-stimulated gene expression and antiproliferative activity of IFNs. J Immunol 157:5145–5154

    PubMed  CAS  Google Scholar 

  23. Munoz-Pinedo C, Ruiz-Ruiz C, Ruiz de Almodovar C, Palacios C, Lopez-Rivas A (2003) Inhibition of glucose metabolism sensitizes tumor cells to death receptor-triggered apoptosis through enhancement of death-inducing signaling complex formation and apical procaspase-8 processing. J Biol Chem 278:12759–12768

    Article  PubMed  CAS  Google Scholar 

  24. Durbin JE, Hackenmiller R, Simon MC, Levy DE (1996) Targeted disruption of the mouse Stat1 gene results in compromised innate immunity to viral disease. Cell 84:443–450

    Article  PubMed  CAS  Google Scholar 

  25. Meraz MA, White JM, Sheehan KC et al (1996) Targeted disruption of the Stat1 gene in mice reveals unexpected physiologic specificity in the JAK-STAT signaling pathway. Cell 84:431–442

    Article  PubMed  CAS  Google Scholar 

  26. Park C, Li S, Cha E, Schindler C (2000) Immune response in Stat2 knockout mice. Immunity 13:795–804

    Article  PubMed  CAS  Google Scholar 

  27. Sangfelt O, Erickson S, Castro J, Heiden T, Einhorn S, Grander D (1997) Induction of apoptosis and inhibition of cell growth are independent responses to interferon-alpha in hematopoietic cell lines. Cell Growth Differ 8:343–352

    PubMed  CAS  Google Scholar 

  28. Thyrell L, Erickson S, Zhivotovsky B et al (2002) Mechanisms of interferon-alpha induced apoptosis in malignant cells. Oncogene 21:1251–1262

    Article  PubMed  CAS  Google Scholar 

  29. Conte E, Manzella L, Zeuner A et al (2003) Involvement of interferon regulatory factor-1 in monocyte CD95 expression and CD95-mediated apoptosis. Cell Death Differ 10:615–617

    Article  PubMed  CAS  Google Scholar 

  30. Fulda S, Debatin KM (2002) IFNgamma sensitizes for apoptosis by upregulating caspase-8 expression through the Stat1 pathway. Oncogene 21:2295–2308

    Article  PubMed  CAS  Google Scholar 

  31. Toomey NL, Deyev VV, Wood C et al (2001) Induction of a TRAIL-mediated suicide program by interferon alpha in primary effusion lymphoma. Oncogene 20:7029–7040

    Article  PubMed  CAS  Google Scholar 

  32. Scaffidi C, Fulda S, Srinivasan A et al (1998) Two CD95 (APO-1/Fas) signaling pathways. EMBO J 17:1675–1687

    Article  PubMed  CAS  Google Scholar 

  33. Panaretakis T, Pokrovskaja K, Shoshan MC, Grander D (2003) Interferon-alpha-induced apoptosis in U266 cells is associated with activation of the proapoptotic Bcl-2 family members Bak and Bax. Oncogene 22:4543–4556

    Article  PubMed  CAS  Google Scholar 

  34. Puthier D, Thabard W, Rapp M et al (2001) Interferon alpha extends the survival of human myeloma cells through an upregulation of the Mcl-1 anti-apoptotic molecule. Br J Haematol 112:358–363

    Article  PubMed  CAS  Google Scholar 

  35. Chen Q, Gong B, Mahmoud-Ahmed AS et al (2001) Apo2L/TRAIL and Bcl-2-related proteins regulate type I interferon-induced apoptosis in multiple myeloma. Blood 98:2183–2192

    Article  PubMed  CAS  Google Scholar 

  36. Crowder C, Dahle O, Davis RE, Gabrielsen OS, Rudikoff S (2005) PML mediates IFN-alpha-induced apoptosis in myeloma by regulating TRAIL induction. Blood 105:1280–1287

    Article  PubMed  CAS  Google Scholar 

  37. Gil J, Esteban M (2000) The interferon-induced protein kinase (PKR), triggers apoptosis through FADD-mediated activation of caspase 8 in a manner independent of Fas and TNF-alpha receptors. Oncogene 19:3665–3674

    Article  PubMed  CAS  Google Scholar 

  38. Iordanov MS, Kirsch JD, Ryabinina OP et al (2005) Recruitment of TRADD, FADD, and caspase 8 to double-stranded RNA-triggered death inducing signaling complexes (dsRNA-DISCs). Apoptosis 10:167–176

    Article  PubMed  CAS  Google Scholar 

  39. Stang MT, Armstrong MJ, Watson GA et al (2007) Interferon regulatory factor-1-induced apoptosis mediated by a ligand-independent Fas-associated death domain pathway in breast cancer cells. Oncogene 26:6420–6430

    Article  PubMed  CAS  Google Scholar 

  40. Budd RC, Yeh WC, Tschopp J (2006) cFLIP regulation of lymphocyte activation and development. Nat Rev Immunol 6:196–204

    Article  PubMed  CAS  Google Scholar 

  41. Golks A, Brenner D, Fritsch C, Krammer PH, Lavrik IN (2005) c-FLIPR, a new regulator of death receptor-induced apoptosis. J Biol Chem 280:14507–14513

    Article  PubMed  CAS  Google Scholar 

  42. Krueger A, Schmitz I, Baumann S, Krammer PH, Kirchhoff S (2001) Cellular FLICE-inhibitory protein splice variants inhibit different steps of caspase-8 activation at the CD95 death-inducing signaling complex. J Biol Chem 276:20633–20640

    Article  PubMed  CAS  Google Scholar 

  43. Scaffidi C, Schmitz I, Krammer PH, Peter ME (1999) The role of c-FLIP in modulation of CD95-induced apoptosis. J Biol Chem 274:1541–1548

    Article  PubMed  CAS  Google Scholar 

  44. Ezelle HJ, Balachandran S, Sicheri F, Polyak SJ, Barber GN (2001) Analyzing the mechanisms of interferon-induced apoptosis using CrmA and hepatitis C virus NS5A. Virology 281:124–137

    Article  PubMed  CAS  Google Scholar 

  45. Chang DW, Xing Z, Pan Y et al (2002) c-FLIP(L) is a dual function regulator for caspase-8 activation and CD95-mediated apoptosis. EMBO J 21:3704–3714

    Article  PubMed  CAS  Google Scholar 

  46. Dohrman A, Kataoka T, Cuenin S, Russell JQ, Tschopp J, Budd RC (2005) Cellular FLIP (long form) regulates CD8+ T cell activation through caspase-8-dependent NF-kappa B activation. J Immunol 174:5270–5278

    PubMed  CAS  Google Scholar 

  47. Kataoka T, Tschopp J (2004) N-terminal fragment of c-FLIP(L) processed by caspase 8 specifically interacts with TRAF2 and induces activation of the NF-kappaB signaling pathway. Mol Cell Biol 24:2627–2636

    Article  PubMed  CAS  Google Scholar 

  48. Panka DJ, Mano T, Suhara T, Walsh K, Mier JW (2001) Phosphatidylinositol 3-kinase/Akt activity regulates c-FLIP expression in tumor cells. J Biol Chem 276:6893–6896

    Article  PubMed  CAS  Google Scholar 

  49. Yeh JH, Hsu SC, Han SH, Lai MZ (1998) Mitogen-activated protein kinase kinase antagonized Fas-associated death domain protein-mediated apoptosis by induced FLICE-inhibitory protein expression. J Exp Med 188:1795–1802

    Article  PubMed  CAS  Google Scholar 

  50. Bullani RR, Huard B, Viard-Leveugle I et al (2001) Selective expression of FLIP in malignant melanocytic skin lesions. J Invest Dermatol 117:360–364

    Article  PubMed  CAS  Google Scholar 

  51. Griffith TS, Chin WA, Jackson GC, Lynch DH, Kubin MZ (1998) Intracellular regulation of TRAIL-induced apoptosis in human melanoma cells. J Immunol 161:2833–2840

    PubMed  CAS  Google Scholar 

  52. Irisarri M, Plumas J, Bonnefoix T et al (2000) Resistance to CD95-mediated apoptosis through constitutive c-FLIP expression in a non-Hodgkin’s lymphoma B cell line. Leukemia 14:2149–2158

    Article  PubMed  CAS  Google Scholar 

  53. Tepper CG, Seldin MF (1999) Modulation of caspase-8 and FLICE-inhibitory protein expression as a potential mechanism of Epstein-Barr virus tumorigenesis in Burkitt’s lymphoma. Blood 94:1727–1737

    PubMed  CAS  Google Scholar 

  54. Ghavami S, Hashemi M, Ande SR et al (2009) Apoptosis and cancer: mutations within caspase genes. J Med Genet 46:497–510

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Ingrid Dacklin for providing us with the IFN resistant cells. We are also grateful to Sofia Kapsi for valuable technical assistance. This work was supported by grants from The Swedish Cancer Society (Young Investigator Award and project grant to J.A.N), The Association of International Cancer Research (J.A.N), The Swedish Research Council (J.A.N.), The Kempe foundation (J.A.N) and a Career grant of Umeå University, Viranative Ltd, Umeå Sweden (E.L.) and The Medical Faculty. Leukocyte IFN was a kind gift from Viranative Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeanette Blomberg.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10495_2011_606_MOESM1_ESM.tif

Supplementary Figure 1. Reduced expression of IFN-receptor signalling molecules does not affect STAT1 activation. (a) Expression of STAT1, STAT2, JAK1 and TYK2 was investigated in un-stimulated parental and IFN resistant cells by immunoblot. (b) Cells were either untreated or stimulated with 1,000 U/ml IFN-α for 48 h and STAT1 was detected by immunoblot. (c) Parental cells and cells of clone I1 were treated with 1,000 U/ml IFN-α for the indicated time points in the figure. Cytoplasmic and nuclear extracts were separated and STAT1 localization was investigated by immunoblot. Actin was used as an equal loading control in all experiments. (TIFF 6952 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blomberg, J., Höglund, A., Eriksson, D. et al. Inhibition of cellular FLICE-like inhibitory protein abolishes insensitivity to interferon-α and death receptor stimulation in resistant variants of the human U937 cell line. Apoptosis 16, 783–794 (2011). https://doi.org/10.1007/s10495-011-0606-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-011-0606-0

Keywords

Navigation