Skip to main content
Log in

P-glycoprotein enhances radiation-induced apoptotic cell death through the regulation of miR-16 and Bcl-2 expressions in hepatocellular carcinoma cells

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

P-glycoprotein (Pgp), an efflux pump, was confirmed the first time to regulate the expressions of miR/gene in cells. Pgp is known to be associated with multidrug resistance. RHepG2 cells, the multidrug resistant subline of human hepatocellular carcinoma HepG2 cells, expressed higher levels of Pgp as well as miR-16, and lower level of Bcl-2 than the parental cells. In addition, RHepG2 cells were more radiation sensitive and showed more pronounced radiation-induced apoptotic cell death than the parental cells. Mechanistic analysis revealed that transfection with mdr1 specific antisense oligos suppressed radiation-induced apoptosis in HepG2 cells. On the other hand, ectopic mdr1 expression enhanced radiation-induced apoptosis in HepG2 cells, SK-HEP-1 cells, MiHa cells, and furthermore, induced miR-16 and suppressed its target gene Bcl-2 in HepG2 cells. Moreover, the enhancement effects of Pgp and miR-16 on radiation-induced apoptosis were counteracted by overexpression of Bcl-2. The Pgp effect on miR-16/Bcl-2 was suppressed by Pgp blocker verapamil indicating the importance of the efflux of Pgp substrates. The present study is the first to reveal the role of Pgp in regulation of miRNA/gene expressions. The findings may provide new perspective in understanding the biological function of Pgp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bodor M, Kelly EJ, Ho RJ (2005) Characterization of the human MDR1 gene. AAPS J 7:E1–E5

    Article  PubMed  Google Scholar 

  2. Ambudkar SV, Kimchi-Sarfaty C, Sauna ZE, Gottesman MM (2003) P-glycoprotein: from genomics to mechanism. Oncogene 22:7468–7485

    Article  PubMed  CAS  Google Scholar 

  3. Goda K, Bacso Z, Szabo G (2009) Multidrug resistance through the spectacle of P-glycoprotein. Curr Cancer Drug Targets 9:281–297

    Article  PubMed  CAS  Google Scholar 

  4. Thomas H, Coley HM (2003) Overcoming multidrug resistance in cancer: an update on the clinical strategy of inhibiting p-glycoprotein. Cancer Control 10:159–165

    PubMed  Google Scholar 

  5. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34:D140–D144

    Article  PubMed  CAS  Google Scholar 

  6. Sun W, Li YS, Huang HD, Shyy JY, Chien S (2010) microRNA: a master regulator of cellular processes for bioengineering systems. Annu Rev Biomed Eng 12:1–27

    Article  PubMed  CAS  Google Scholar 

  7. Ma J, Dong C, Ji C (2010) MicroRNA and drug resistance. Cancer Gene Ther 17:527–531

    Google Scholar 

  8. Weidhaas JB, Babar I, Nallur SM, Trang P, Roush S, Boehm M et al (2007) MicroRNAs as potential agents to alter resistance to cytotoxic anticancer therapy. Cancer Res 67:11111–11116

    Article  PubMed  CAS  Google Scholar 

  9. Meyn RE, Milas L, Ang KK (2009) The role of apoptosis in radiation oncology. Int J Radiat Biol 85:107–115

    Article  PubMed  CAS  Google Scholar 

  10. Sen S, D’Incalci M (1992) Apoptosis. Biochemical events and relevance to cancer chemotherapy. FEBS Lett 307:122–127

    Article  PubMed  CAS  Google Scholar 

  11. Jin Z, El-Deiry WS (2005) Overview of cell death signaling pathways. Cancer Biol Ther 4:139–163

    Article  PubMed  CAS  Google Scholar 

  12. Caroppi P, Sinibaldi F, Fiorucci L, Santucci R (2009) Apoptosis and human diseases: mitochondrion damage and lethal role of released cytochrome C as proapoptotic protein. Curr Med Chem 16:4058–4065

    PubMed  CAS  Google Scholar 

  13. Sharpe JC, Arnoult D, Youle RJ (2004) Control of mitochondrial permeability by Bcl-2 family members. Biochim Biophys Acta 1644:107–113

    Article  PubMed  CAS  Google Scholar 

  14. Xia L, Zhang D, Du R, Pan Y, Zhao L, Sun S et al (2008) miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells. Int J Cancer 123:372–379

    Article  PubMed  CAS  Google Scholar 

  15. Mu Z, Hachem P, Pollack A (2005) Antisense Bcl-2 sensitizes prostate cancer cells to radiation. Prostate 65:331–340

    Article  PubMed  CAS  Google Scholar 

  16. Gottesman MM, Pastan I (1993) Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem 62:385–427

    Article  PubMed  CAS  Google Scholar 

  17. Thiebaut F, Currier SJ, Whitaker J, Haugland RP, Gottesman MM, Pastan I et al (1990) Activity of the multidrug transporter results in alkalinization of the cytosol: measurement of cytosolic pH by microinjection of a pH-sensitive dye. J Histochem Cytochem 38:685–690

    Article  PubMed  CAS  Google Scholar 

  18. Mardones P, Medina JF, Elferink RP (2008) Activation of cyclic AMP Signaling in Ae2-deficient mouse fibroblasts. J Biol Chem 283:12146–12153

    Article  PubMed  CAS  Google Scholar 

  19. Ueda K, Okamura N, Hirai M, Tanigawara Y, Saeki T, Kioka N et al (1992) Human P-glycoprotein transports cortisol, aldosterone, and dexamethasone, but not progesterone. J Biol Chem 267:24248–24252

    PubMed  CAS  Google Scholar 

  20. Sharma RC, Inoue S, Roitelman J, Schimke RT, Simoni RD (1992) Peptide transport by the multidrug resistance pump. J Biol Chem 267:5731–5734

    PubMed  CAS  Google Scholar 

  21. Drach J, Gsur A, Hamilton G, Zhao S, Angerler J, Fiegl M et al (1996) Involvement of P-glycoprotein in the transmembrane transport of interleukin-2 (IL-2), IL-4, and interferon-gamma in normal human T lymphocytes. Blood 88:1747–1754

    PubMed  CAS  Google Scholar 

  22. Beadling C, Smith KA (2002) DNA array analysis of interleukin-2-regulated immediate/early genes. Med Immunol 1:2

    Article  PubMed  Google Scholar 

  23. Inomata M, Into T, Nakashima M, Noguchi T, Matsushita K (2009) IL-4 alters expression patterns of storage components of vascular endothelial cell-specific granules through STAT6- and SOCS-1-dependent mechanisms. Mol Immunol 46:2080–2089

    Article  PubMed  CAS  Google Scholar 

  24. Heller NM, Matsukura S, Georas SN, Boothby MR, Rothman PB, Stellato C et al (2004) Interferon-gamma inhibits STAT6 signal transduction and gene expression in human airway epithelial cells. Am J Respir Cell Mol Biol 31:573–582

    Article  PubMed  CAS  Google Scholar 

  25. Gong AY, Zhou R, Hu G, Li X, Splinter PL, O’Hara SP et al (2009) MicroRNA-513 regulates B7-H1 translation and is involved in IFN-gamma-induced B7-H1 expression in cholangiocytes. J Immunol 182:1325–1333

    Article  PubMed  CAS  Google Scholar 

  26. Lerner M, Harada M, Loven J, Castro J, Davis Z, Oscier D et al (2009) DLEU2, frequently deleted in malignancy, functions as a critical host gene of the cell cycle inhibitory microRNAs miR-15a and miR-16-1. Exp Cell Res 315:2941–2952

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The pHaMDR plasmid was a gift from Dr. Michael Gottesman, Laboratory of Cell Biology, Center for Cancer Research, NCI, NIH. This work was supported by the General Research Fund (CUHK466908, CUHK467609) from Hong Kong Research Grants Council.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tsun Yee Tsang or Tim Tak Kwok.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 30 kb)

Supplementary material 2 (JPG 108 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsang, T.Y., Tang, W.Y., Chan, J.Y.W. et al. P-glycoprotein enhances radiation-induced apoptotic cell death through the regulation of miR-16 and Bcl-2 expressions in hepatocellular carcinoma cells. Apoptosis 16, 524–535 (2011). https://doi.org/10.1007/s10495-011-0581-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-011-0581-5

Keywords

Navigation