Skip to main content

Advertisement

Log in

Cellular and biomolecular responses of human ovarian cancer cells to cytostatic dinuclear platinum(II) complexes

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Polynuclear platinum(II) complexes represent a class of potential anticancer agents that have shown promising pharmacological properties in preclinical studies. The nature of cellular responses induced by these complexes, however, is poorly understood. In this research, the cellular responses of human ovarian cancer COC1 cells to dinuclear platinum(II) complexes {[cis-Pt(NH3)2Cl]2L1}(NO3)2 (1) and {[cis-Pt(NH3)2Cl]2L2}(NO3)2 (2) (L1 = α,α′-diamino-p-xylene, L2 = 4,4′-methylenedianiline) has been studied using cisplatin as a reference. The effect of platinum complexes on the proliferation, death mode, mitochondrial membrane potential, and cell cycle progression has been examined by MTT assay and flow cytometry. The activation of cell cycle checkpoint kinases (CHK1/2), extracellular signal-regulated kinases (ERK1/2), and p38 mitogen-activated protein kinase (p38 MAPK) of the cells by the complexes has also been analyzed using phospho-specific flow cytometry. Complex 1 is more cytotoxic than complex 2 and cisplatin at most concentrations; complex 2 and cisplatin are comparably cytotoxic. These complexes kill the cells through an apoptotic or apoptosis-like pathway characterized by exposure of phosphatidylserine and dissipation of mitochondrial membrane potential. Complex 1 shows the strongest inductive effect on the morphological changes of the cells, followed by cisplatin and complex 2. Complexes 1 and 2 arrest the cell cycle in G2 or M phase, while cisplatin arrests the cell cycle in S phase. The influence of these complexes on CHK1/2, ERK1/2, and p38 MAPK varies with the dose of the drugs or reaction time. Activation of phospho-ERK1/2 and phospho-p38 MAPK by these complexes is closely related to the cytostatic activity. The results demonstrate that dinuclear platinum(II) complexes can induce some cellular responses different from those caused by cisplatin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kelland L (2007) The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer 7:573–584

    Article  PubMed  CAS  Google Scholar 

  2. Wang XY, Guo ZJ (2008) Towards the rational design of platinum(II) and gold(III) complexes as antitumour agents. Dalton Trans 1521–1532

  3. Cossa G, Gatti L, Zunino F, Perego P (2009) Strategies to improve the efficacy of platinum compounds. Curr Med Chem 16:2355–2365

    Article  PubMed  CAS  Google Scholar 

  4. Farrell N (2004) Polynuclear platinum drugs. Metal Ions Biol Syst 42:251–296

    CAS  Google Scholar 

  5. Wheate NJ, Collins JG (2003) Multi-nuclear platinum complexes as anti-cancer drugs. Coord Chem Rev 241:133–145

    Article  CAS  Google Scholar 

  6. Jung Y, Lippard SJ (2007) Direct cellular responses to platinum-induced DNA damage. Chem Rev 107:1387–1407

    Article  PubMed  CAS  Google Scholar 

  7. Qu Y, Tran MC, Farrell NP (2009) Structural consequences of a 3′ → 3′ DNA interstrand cross-link by a trinuclear platinum complex: unique formation of two such cross-links in a 10-mer duplex. J Biol Inorg Chem 14:969–977

    Article  PubMed  CAS  Google Scholar 

  8. Zhang JY, Thomas DS, Berners-Price SJ, Farrell N (2008) Effects of geometric isomerism and anions on the kinetics and mechanism of the stepwise formation of long-range DNA interstrand cross-links by dinuclear platinum antitumor complexes. Chem Eur J 14:6391–6405

    Article  CAS  Google Scholar 

  9. Hegmans A, Kasparkova J, Vrana O, Kelland LR, Brabec V, Farrell NP (2008) Amide-based prodrugs of spermidine-bridged dinuclear platinum. Synthesis, DNA binding, and biological activity. J Med Chem 51:2254–2260

    Article  PubMed  CAS  Google Scholar 

  10. Billecke C, Finniss S, Tahash L, Miller C, Mikkelsen T, Farrell NP, Bögler O (2006) Polynuclear platinum anticancer drugs are more potent than cisplatin and induce cell cycle arrest in glioma. Neuro-Oncology 8:215–226

    Article  PubMed  CAS  Google Scholar 

  11. Zhu JH, Lin MX, Fan DM, Wu ZY, Chen YC, Zhang JF, Lu Y, Guo ZJ (2009) The role of bridging ligands in determining DNA-binding ability and cross-linking patterns of dinuclear platinum(II) antitumour complexes. Dalton Trans 10889–10895

  12. Wang D, Lippard SJ (2005) Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov 4:307–320

    Article  PubMed  CAS  Google Scholar 

  13. Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, Blagosklonny MV, El-Deiry WS, Golstein P, Green DR, Hengartner M, Knight RA, Kumar S, Lipton SA, Malorni W, Nuñez G, Peter ME, Tschopp J, Yuan J, Piacentini M, Zhivotovsky B, Melino G (2009) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 16:3–11

    Article  PubMed  CAS  Google Scholar 

  14. Cepeda V, Fuertes MA, Castilla J, Alonso C, Quevedo C, Pérez JM (2007) Biochemical mechanisms of cisplatin cytotoxicity. Anticancer Agents Med Chem 7:3–18

    Article  PubMed  CAS  Google Scholar 

  15. de Bruin EC, Medema JP (2008) Apoptosis and non-apoptotic deaths in cancer development and treatment response. Cancer Treat Rev 34:737–749

    Article  PubMed  Google Scholar 

  16. Kastan MB, Bartek J (2004) Cell-cycle checkpoints and cancer. Nature 432:316–323

    Article  PubMed  CAS  Google Scholar 

  17. Bartek J, Lukas J (2003) Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 3:421–429

    Article  PubMed  CAS  Google Scholar 

  18. Boehrer S, Adès L, Tajeddine N, Hofmann WK, Kriener S, Bug G, Ottmann OG, Ruthardt M, Galluzzi L, Fouassier C, Tailler M, Olaussen KA, Gardin C, Eclache V, de Botton S, Thepot S, Fenaux P, Kroemer G (2009) Suppression of the DNA damage response in acute myeloid leukemia versus myelodysplastic syndrome. Oncogene 28:2205–2218

    Article  PubMed  CAS  Google Scholar 

  19. Gonzalez VM, Fuertes MA, Alonso C, Perez JM (2001) Is cisplatin-induced cell death always produced by apoptosis? Mol Pharmacol 59:657–663

    PubMed  CAS  Google Scholar 

  20. Roux PP, Blenis J (2004) ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev 68:320–344

    Article  PubMed  CAS  Google Scholar 

  21. Fan DM, Yang XL, Wang XY, Zhang SC, Mao JF, Ding J, Lin LP, Guo ZJ (2007) A dinuclear monofunctional platinum(II) complex with an aromatic linker shows low reactivity towards glutathione but high DNA binding ability and antitumor activity. J Biol Inorg Chem 12:655–665

    Article  PubMed  CAS  Google Scholar 

  22. Hansen MB, Nielsen SE, Berg K (1989) Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J Immunol Methods 119:203–210

    Article  PubMed  CAS  Google Scholar 

  23. Krutzik PO, Nolan GP (2003) Intracellular phospho-protein staining techniques for flow cytometry: monitoring single cell signaling events. Cytom Part A 55A:61–70

    Article  CAS  Google Scholar 

  24. Zheng B, Cantley LC (2007) Regulation of epithelial tight junction assembly and disassembly by AMP-activated protein kinase. Proc Natl Acad Sci USA 104:819–822

    Article  PubMed  CAS  Google Scholar 

  25. Trisciuoglio D, Uranchimeg B, Cardellina JH, Meragelman TL, Matsunaga S, Fusetani N, Del Bufalo D, Shoemaker RH, Melillo G (2008) Induction of apoptosis in human cancer cells by candidaspongiolide, a novel sponge polyketide. J Natl Cancer Inst 100:1233–1246

    Article  PubMed  CAS  Google Scholar 

  26. Krysko DV, Berghe TV, D’Herde K, Vandenabeele P (2008) Apoptosis and necrosis: detection, discrimination and phagocytosis. Methods 44:205–221

    Article  PubMed  CAS  Google Scholar 

  27. Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305:626–629

    Article  PubMed  CAS  Google Scholar 

  28. Iijima T (2006) Mitochondrial membrane potential and ischemic neuronal death. Neurosci Res 55:234–243

    Article  PubMed  CAS  Google Scholar 

  29. Kroemer G, Reed JC (2000) Mitochondrial control of cell death. Nat Med 6:513–519

    Article  PubMed  CAS  Google Scholar 

  30. Melli G, Taiana M, Camozzi F, Triolo D, Podini P, Quattrini A, Taroni F, Lauria G (2008) Alpha-lipoic acid prevents mitochondrial damage and neurotoxicity in experimental chemotherapy neuropathy. Exp Neurol 214:276–284

    Article  PubMed  CAS  Google Scholar 

  31. Liu Q, Guntuku S, Cui XS, Matsuoka S, Cortez D, Tamai K, Luo G, Carattini-Rivera S, DeMayo F, Bradley A, Donehower LA, Elledge SJ (2000) Chk1 is an essential kinase that is regulated by Atr and required for the G2/M DNA damage checkpoint. Genes Dev 14:1448–1459

    Article  PubMed  CAS  Google Scholar 

  32. Zhao H, Piwnica-Worms H (2001) ATR-Mediated checkpoint pathways regulate phosphorylation and activation of human Chk1. Mol Cell Biol 21:4129–4139

    Article  PubMed  CAS  Google Scholar 

  33. Hirao A, Kong YY, Matsuoka S, Wakeham A, Ruland J, Yoshida H, Liu D, Elledge SJ, Mak TW (2000) DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 287:1824–1827

    Article  PubMed  CAS  Google Scholar 

  34. Krutzik PO, Crane JM, Clutter MR, Nolan GP (2008) High-content single-cell drug screening with phosphospecific flow cytometry. Nat Chem Biol 4:132–142

    Article  PubMed  CAS  Google Scholar 

  35. Zhan XL, Wishart MJ, Guan KL (2001) Nonreceptor tyrosine phosphatases in cellular signaling: regulation of mitogen-activated protein kinases. Chem Rev 101:2477–2496

    Article  PubMed  CAS  Google Scholar 

  36. Lee AW, Sharp ER, O’Mahony A, Rosenberg MG, Israelski DM, Nolan GP, Nixon DF (2008) Single-cell, phosphoepitope-specific analysis demonstrates cell type- and pathway-specific dysregulation of Jak/STAT and MAPK signaling associated with in vivo human immunodeficiency virus type 1 infection. J Virol 82:3702–3712

    Article  PubMed  CAS  Google Scholar 

  37. Ballif BA, Blenis J (2001) Molecular mechanisms mediating mammalian mitogen-activated protein kinase (MAPK) kinase (MEK)-MAPK cell survival signals. Cell Growth Differ 12:397–408

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support from the National Natural Science Foundation of China (Grants 20631020, 90713001, 20721002, and 30870554) and the Natural Science Foundation of Jiangsu Province (Grant BK2008015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoyong Wang or Zijian Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, M., Wang, X., Zhu, J. et al. Cellular and biomolecular responses of human ovarian cancer cells to cytostatic dinuclear platinum(II) complexes. Apoptosis 16, 288–300 (2011). https://doi.org/10.1007/s10495-010-0562-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-010-0562-0

Keywords

Navigation