Skip to main content
Log in

Mutant p53 exhibits trivial effects on mitochondrial functions which can be reactivated by ellipticine in lymphoma cells

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Increasing evidence has shown that a fraction of the wild-type (wt) form of the tumor suppressor p53, can translocate to mitochondria due to genotoxic stress. The mitochondrial targets of wt p53 have also been studied. However, whether mutant p53, which exists in 50% of human cancers, translocates to mitochondria and affects mitochondrial functions is unclear. In this study, we used doxorubicin, a chemotherapeutic drug, to treat five human lymphoma cell lines with wt, mutant or deficient in p53, to induce p53 activation and mitochondrial translocation. Our results demonstrated that mutant p53, like wt p53, was induced upon doxorubicin treatment. Similarly, a fraction of mutant p53 also translocated to mitochondria. However, Complex I and II activities in the mitochondria were compromised only in wt p53-bearing cells after doxorubicin treatment, but not in mutant p53-bearing cells. Similarly, doxorubicin treatment caused greater cell death only in wt p53-bearing cells, but not in mutant p53-bearing cells. When p53 deficient Ramos cells were transfected with mutant p53 (249S), the cells showed resistance to doxorubicin-induced cell death and decreases in complex activities. To reactivate mutant p53 and reverse chemoresistance, ellipticine (5,11-dimethyl-6H-pyrido[4,3-b]carbazole) was used to treat mutant p53 cells. Ellipticine enhanced p53 mitochondrial translocation, decreased Complex I activity, and sensitized p53 mutant cells to doxorubicin-induced apoptosis. In summary, our studies suggest that mutations in p53 may not hinder p53’s mitochondrial translocation, but impair its effects on mitochondrial functions. Therefore, restoring mutant p53 by ellipticine may sensitize these cells to chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Levine JJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88:323–331

    Article  PubMed  CAS  Google Scholar 

  2. Hollstein M, Rice K, Greenblatt MS, Soussi T, Fuchs R et al (1994) Datebase of p53 gene somatic mutations in human tumors and cell lines. Nucleic Acids Res 22:3551–3555

    PubMed  CAS  Google Scholar 

  3. Garcia-Cao I, Garcia-Cao M, Martin-Caballero J, Criado LM, Klatt P et al (2002) “Super p53” mice exhibit enhanced DNA damage response, are tumor resistant and age normally. EMBO J 21:6225–6235

    Article  PubMed  CAS  Google Scholar 

  4. Tyner SD, Venkatachalam S, Choi J, Jones S, Ghebranious N et al (2002) p53 mutant mice that display early ageing-associated phenotypes. Nature 415:45–53

    Article  PubMed  CAS  Google Scholar 

  5. Jia HP (2006) Controversial Chinese gene-therapy drug entering unfamiliar territory. Nat Rev Drug Discov 4:269–270

    Article  Google Scholar 

  6. Tokino T, Nakamura Y (2000) The role of p53-target genes in human cancer. Crit Rev Oncol Hematol 33:1–6

    Article  PubMed  CAS  Google Scholar 

  7. Moll UM, Zaika A (2001) Nuclear and mitochondrial apoptotic pathways of p53. FEBS Lett 493:65–69

    Article  PubMed  CAS  Google Scholar 

  8. Li PF, Dietz R, von Harsdorf R (1999) p53 regulates mitochondrial membrane potential through reactive oxygen species and induces cytochrome c-independent apoptosis blocked by Bcl-2. EMBO J 18:6027–6036

    Article  PubMed  CAS  Google Scholar 

  9. Marchenko ND, Zaika AI, Moll UM (2000) Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J Biol Chem 275:16202–16212

    Article  PubMed  CAS  Google Scholar 

  10. Erster S, Mihara M, Kim RH, Petrenko O, Moll UM (2004) In vivo mitochondrial p53 translocation triggers a rapid first wave of cell death in response to DNA damage that can precede p53 target gene activation. Mol Cell Biol 24:6728–6741

    Article  PubMed  CAS  Google Scholar 

  11. Zhao Y, Chaiswing L, Velez JM, Batinic-Haberle I, Colburn NH et al (2005) p53 translocation to mitochondria precedes its nuclear translocation and targets mitochondrial oxidative defense protein-manganese superoxide dismutase. Cancer Res 65:3745–3750

    Article  PubMed  CAS  Google Scholar 

  12. Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T et al (2003) p53 has a direct apoptogenic role at the mitochondria. Mol Cell 11(3):577–590

    Article  PubMed  CAS  Google Scholar 

  13. Heyne K, Schmitt K, Mueller D, Armbruester V, Mestres P et al (2008) Resistance of mitochondrial p53 to dominant inhibition. Mol Cancer 7:54–70

    Article  PubMed  Google Scholar 

  14. Tang X, Zhu Y, Han L, Kim AL, Kopelovich L et al (2007) CP-31398 reactivates mutant p53 tumor suppressor function and inhibits UVB-induced skin carcinogenesis in mice. J Clin Invest 117:3753–3764

    Article  PubMed  CAS  Google Scholar 

  15. Mahyar-Roemer M, Fritzsche C, Wagner S, Laue M, Roemer K (2004) Mitochondrial p53 levels parallel total p53 levels independent of stress response in human colorectal carcinoma and glioblastoma cells. Oncogene 23:6226–6236

    Article  PubMed  CAS  Google Scholar 

  16. Allman R, Errington RJ, Smith PJ (2003) Delayed expression of apoptosis in human lymphoma cells undergoing low-dose taxol-induced mitotic stress. Br J Cancer 88:1649–1658

    Article  PubMed  CAS  Google Scholar 

  17. Gao C, Nakajima T, Taya Y, Tsuchida N (1999) Activation of p53 in MDM2-overexpressing cells through phosphorylation. Biochem Biophys Res Commun 264:860–864

    Article  PubMed  CAS  Google Scholar 

  18. Gaidano G, Ballerini P, Gong JZ, Inghirami G, Neri A et al (1991) p53 mutations in human lymphoid malignancies: association with Burkitt lymphoma and chronic lymphocytic leukemia. Proc Natl Acad Sci USA 88:5413–5417

    Article  PubMed  CAS  Google Scholar 

  19. Wiman KG, Magnusson KP, Ramqvist T, Klein G (1991) Mutant p53 detected in a majority of Burkitt lymphoma cell lines by monoclonal antibody PAb240. Oncogene 6:1633–1639

    PubMed  CAS  Google Scholar 

  20. Karpova MB, Sanmun D, Henter JI, Smirnov AF, Fadeel B (2006) Betulinic acid, a natural cytotoxic agent, fails to trigger apoptosis in human Burkitt’s lymphoma-derived B-cell lines. Int J Cancer 118:246–252

    Article  PubMed  CAS  Google Scholar 

  21. Yen HC, Oberley TD, Vichitbandha S, Ho YS, St Clair DK (1996) The protective role of manganese superoxide dismutase against adriamycin-induced acute cardiac toxicity in transgenic mice. J Clin Invest 98:1253–1260

    Article  PubMed  CAS  Google Scholar 

  22. Zhao Y, Wang LM, Chaiswing L, Yen HC, Oberley TD et al (2006) Tamoxifen protects against acute tumor necrosis factor alpha-induced cardiac injury via improving mitochondrial functions. Free Radic Bio Med 40:1234–1241

    Article  CAS  Google Scholar 

  23. Bykov VJ, Selivanova G, Wiman KG (2003) Small molecules that reactivate mutant p53. Eur J Cancer 39:1828–1834

    Article  PubMed  CAS  Google Scholar 

  24. Duthu A, Debuire B, Romano J, Ehrhart JC, Fiscella M et al (1992) p53 mutations in raji cells–characterization and localization relative to other burkitt’s lymphomas. Oncogene 7:2161–2167

    PubMed  CAS  Google Scholar 

  25. Donahue RJ, Razmara M, Hoek JB, Knudsen TB (2001) Direct influence of the p53 tumor suppressor on mitochondrial biogenesis and function. FASEB J 15:635–644

    Article  PubMed  CAS  Google Scholar 

  26. Matoba S, Kang JG, Patino WD, Wragg A, Boehm M et al (2006) p53 regulates mitochondrial respiration. Science 312:1650–1653

    Article  PubMed  CAS  Google Scholar 

  27. Soussi T (2007) p53 alterations in human cancer: more questions than answers. Oncogene 26:2145–2156

    Article  PubMed  CAS  Google Scholar 

  28. Achanta G, Sasaki R, Feng L, Carew JS, Lu W et al (2005) Novel role of p53 in maintaining mitochondrial genetic stability through interaction with DNA Pol gamma. EMBO J 24:3482–3492

    Article  PubMed  CAS  Google Scholar 

  29. Yoshida Y, Izumi H, Torigoe T, Ishiguchi H, Itoh H et al (2003) p53 physically interacts with mitochondrial transcription factor A and differentially regulates binding to damaged DNA. Cancer Res 63:3729–3734

    PubMed  CAS  Google Scholar 

  30. Brown CR, Hong-Brown LQ, Welch WJ (1997) Correcting temperature-sensitive protein folding defects. J Clin Invest 99:1432–1444

    Article  PubMed  CAS  Google Scholar 

  31. Selivanova G, Kawasaki T, Ryabchenko L, Wiman KG (1998) Reactivation of mutant p53: a new strategy for cancer therapy. Semin Cancer Biol 8:369–378

    Article  PubMed  CAS  Google Scholar 

  32. Sugikawa E, Hosoi T (1999) Mutant p53 mediated induction of cell cycle arrest and apoptosis at G1 phase by 9-hydroxyellipticine. Anticancer Res 19:3099–3108

    PubMed  CAS  Google Scholar 

  33. Huff AC, Kreuzer KN (1990) Evidence for a common mechanism of action for antitumor and antibacterial agents that inhibit type II DNA topoisomerases. J Biol Chem 265:20496–20505

    PubMed  CAS  Google Scholar 

  34. Peng Y, Li C, Chen L, Sebti S, Chen J (2003) Rescue of mutant p53 transcription function by ellipticine. Oncogene 22:4478–4487

    Article  PubMed  CAS  Google Scholar 

  35. Stiborová M, Sejbal J, Borek-Dohalská L, Aimová D, Poljaková J et al (2004) The anticancer drug ellipticine forms covalent DNA adducts, mediated by human cytochromes P450, through metabolism to 13-hydroxyellipticine and ellipticine N2-oxide. Cancer Res 64:8374–8380

    Article  PubMed  Google Scholar 

  36. Fornari FA, Randolph JK, Yalowich JC, Ritke MK, Gewirtz DA (1994) Interference by doxorubicin with DNA unwinding in MCF-7 breast tumor cells. Mol Pharmacol 45:649–656

    PubMed  CAS  Google Scholar 

  37. Pigram WJ, Fuller W, Hamilton LD (1972) Stereochemistry of intercalation: interaction of daunomycin with DNA. Nature New Biol 235:17–19

    Article  PubMed  CAS  Google Scholar 

  38. Ohashi M, Sugikawa E, Nakanishi N (1995) Inhibition of p53 protein phosphorylation by 9-hydroxyellipticine: a possible anticancer mechanism. Jpn J Cancer Res 86:819–827

    PubMed  CAS  Google Scholar 

  39. Hubert A, Paris S, Piret JP, Ninane N, Raes M et al (2006) Casein kinase 2 inhibition decreases hypoxia-inducible factor-1 activity under hypoxia through elevated p53 protein level. J Cell Sci 119:3351–3362

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Dr. Mitchell Smith at Fox Chase Cancer Center, Philadelphia, PA, for providing us with human lymphoma B-cell lines DoHH2; and Dr. Heinz Kohler at the University of Kentucky for providing Raji, DHL-4, Romas, and JOK-1 cells. We also would like to thank Rachael Walton (C.E. Byrd High School, Shreveport, LA) and Adrienne Parker (Wiley College, Marshall, TX) for their technical support. This work was supported by Grant Number R03CA128077 from the National Cancer Institute and Grant Number NSF(2010)-PFUND-199 from the Louisiana Board of Regents.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunfeng Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, F., Liu, J., Robbins, D. et al. Mutant p53 exhibits trivial effects on mitochondrial functions which can be reactivated by ellipticine in lymphoma cells. Apoptosis 16, 301–310 (2011). https://doi.org/10.1007/s10495-010-0559-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-010-0559-8

Keywords

Navigation