Skip to main content
Log in

Blocking NF-κB and Akt by Hsp90 inhibition sensitizes Smac mimetic compound 3-induced extrinsic apoptosis pathway and results in synergistic cancer cell death

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

NF-κB and Akt are two main cell survival pathways that attenuate the anticancer efficacy of therapeutics. Our previous studies demonstrated that the Smac mimetic compound 3 (SMC3) specifically suppresses c-IAP1 and induces TNF-α autocrine to kill cancer cells. However, SMC3 also induces a cell survival signal through NF-κB activation. In this report, we further found that SMC3 potently activates Akt, which inhibits SMC3-induced cancer cell death. Strikingly, concurrent blocking NF-κB and Akt resulted in a significantly potentiated cytotoxicity. Because heat shock protein 90 (Hsp90) plays an important role in maintaining the integrity of both the NF-κB and Akt pathways in cancer cells, we examined if suppression of Hsp90 is able to potentiate SMC3-induced cancer cell death. The results show that targeting Hsp90 does not interfere with SMC3-induced c-IAP1 degradation and TNF-α autocrine, the key processes for SMC3-induced cancer cell apoptosis. However, Hsp90 inhibitors effectively blocked SMC3-induced NF-κB activation through degradation of RIP1 and IKKβ, two key components of the NF-κB activation pathway, and reduced both the constitutive and SMC3-induced Akt activity through degradation of the Akt protein. Consistently, with the co-treatment of SMC3 and Hsp90 inhibitors, apoptosis was markedly sensitized and a synergistic cytotoxicity was observed. The results suggest that concurrent targeting c-IAP1 and Hsp90 by combination of SMC3 and Hsp90 inhibitors is an effective approach for improving the anticancer value of SMC3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

IAP:

Inhibitor of apoptosis protein

NF-κB:

Nuclear factor κB

Smac:

Second mitochondria-derived activator of caspase

SMC3:

Smac mimetic compound 3

TNF-α:

Tumor necrosis factor alpha

TNFR1:

TNF-α receptor 1

Hsp90:

Heat shock protein 90

References

  1. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  CAS  PubMed  Google Scholar 

  2. Jin X, Wang Z, Qiu L et al (2008) Potential biomarkers involving IKK/RelA signal in early stage non-small cell lung cancer. Cancer Sci 99:582–589

    Article  CAS  PubMed  Google Scholar 

  3. Karin M, Greten FR (2005) NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5:749–759

    Article  CAS  PubMed  Google Scholar 

  4. Li J, Jia H, Xie L et al (2009) Association of constitutive nuclear factor-kappaB activation with aggressive aspects and poor prognosis in cervical cancer. Int J Gynecol Cancer 19:1421–1426

    Article  PubMed  Google Scholar 

  5. Karin M (2006) Nuclear factor-kappaB in cancer development and progression. Nature 441:431–436

    Article  CAS  PubMed  Google Scholar 

  6. Hayden MS, Ghosh S (2008) Shared principles in NF-kappaB signaling. Cell 132:344–362

    Article  CAS  PubMed  Google Scholar 

  7. Lin Y, Bai L, Chen W, Xu S (2010) The NF-kappaB activation pathways, emerging molecular targets for cancer prevention and therapy. Expert Opin Ther Targets 14:45–55

    Article  CAS  PubMed  Google Scholar 

  8. Aggarwal BB (2004) Nuclear factor-kappaB: the enemy within. Cancer Cell 6:203–208

    Article  CAS  PubMed  Google Scholar 

  9. Garcia-Echeverria C, Sellers WR (2008) Drug discovery approaches targeting the PI3K/Akt pathway in cancer. Oncogene 27:5511–5526

    Article  CAS  PubMed  Google Scholar 

  10. Cheng JQ, Lindsley CW, Cheng GZ, Yang H, Nicosia SV (2005) The Akt/PKB pathway: molecular target for cancer drug discovery. Oncogene 24:7482–7492

    Article  CAS  PubMed  Google Scholar 

  11. Sarker D, Reid AH, Yap TA, de Bono JS (2009) Targeting the PI3K/AKT pathway for the treatment of prostate cancer. Clin Cancer Res 15:4799–4805

    Article  CAS  PubMed  Google Scholar 

  12. Chen W, Wang X, Zhuang J, Zhang L, Lin Y (2007) Induction of death receptor 5 and suppression of survivin contribute to sensitization of TRAIL-induced cytotoxicity by quercetin in non-small cell lung cancer cells. Carcinogenesis 28:2114–2121

    Article  CAS  PubMed  Google Scholar 

  13. Memmott RM, Dennis PA (2009) Akt-dependent and -independent mechanisms of mTOR regulation in cancer. Cell Signal 21:656–664

    Article  CAS  PubMed  Google Scholar 

  14. Chen W, Bai L, Wang X, Xu S, Belinsky SA, Lin Y (2010) Acquired activation of the Akt/cyclooxygenase-2/Mcl-1 pathway renders lung cancer cells resistant to apoptosis. Mol Pharmacol 77:416–423

    Article  CAS  PubMed  Google Scholar 

  15. Wang X, Chen W, Zeng W et al (2008) Akt-mediated eminent expression of c-FLIP and Mcl-1 confers acquired resistance to TRAIL-induced cytotoxicity to lung cancer cells. Mol Cancer Ther 7:1156–1163

    Article  CAS  PubMed  Google Scholar 

  16. Nakanishi C, Toi M (2005) Nuclear factor-kappaB inhibitors as sensitizers to anticancer drugs. Nat Rev Cancer 5:297–309

    Article  CAS  PubMed  Google Scholar 

  17. Chen W, Wang X, Bai L, Liang X, Zhuang J, Lin Y (2008) Blockage of NF-kappaB by IKKbeta- or RelA-siRNA rather than the NF-kappaB super-suppressor IkappaBalpha mutant potentiates adriamycin-induced cytotoxicity in lung cancer cells. J Cell Biochem 105:554–561

    Article  CAS  PubMed  Google Scholar 

  18. Wang X, Chen W, Lin Y (2007) Sensitization of TNF-induced cytotoxicity in lung cancer cells by concurrent suppression of the NF-kappaB and Akt pathways. Biochem Biophys Res Commun 355:807–812

    Article  CAS  PubMed  Google Scholar 

  19. He HN, Wang X, Zheng XL et al (2010) Concurrent blockade of the NF-kappaB and Akt pathways potently sensitizes cancer cells to chemotherapeutic-induced cytotoxicity. Cancer Lett 295:38–43

    Article  CAS  PubMed  Google Scholar 

  20. Neckers L (2007) Heat shock protein 90: the cancer chaperone. J Biosci 32:517–530

    Article  CAS  PubMed  Google Scholar 

  21. Wang X, Ju W, Renouard J, Aden J, Belinsky SA, Lin Y (2006) 17-allylamino-17-demethoxygeldanamycin synergistically potentiates tumor necrosis factor-induced lung cancer cell death by blocking the nuclear factor-kappaB pathway. Cancer Res 66:1089–1095

    Article  CAS  PubMed  Google Scholar 

  22. Lewis J, Devin A, Miller A et al (2000) Disruption of hsp90 function results in degradation of the death domain kinase, receptor-interacting protein (RIP), and blockage of tumor necrosis factor-induced nuclear factor-kappaB activation. J Biol Chem 275:10519–10526

    Article  CAS  PubMed  Google Scholar 

  23. Petersen SL, Wang L, Yalcin-Chin A et al (2007) Autocrine TNFalpha signaling renders human cancer cells susceptible to Smac-mimetic-induced apoptosis. Cancer Cell 12:445–456

    Article  CAS  PubMed  Google Scholar 

  24. Varfolomeev E, Blankenship JW, Wayson SM et al (2007) IAP antagonists induce autoubiquitination of c-IAPs, NF-kappaB activation, and TNFalpha-dependent apoptosis. Cell 131:669–681

    Article  CAS  PubMed  Google Scholar 

  25. Vince JE, Wong WW, Khan N et al (2007) IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis. Cell 131:682–693

    Article  CAS  PubMed  Google Scholar 

  26. Bertrand MJ, Milutinovic S, Dickson KM et al (2008) cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol Cell 30:689–700

    Article  CAS  PubMed  Google Scholar 

  27. Wang L, Du F, Wang X (2008) TNF-alpha induces two distinct caspase-8 activation pathways. Cell 133:693–703

    Article  CAS  PubMed  Google Scholar 

  28. Bai L, Chen W, Wang X, Ju W, Xu S, Lin Y (2009) Attenuating Smac mimetic compound 3-induced NF-kappaB activation by luteolin leads to synergistic cytotoxicity in cancer cells. J Cell Biochem 108:1125–1131

    Article  CAS  PubMed  Google Scholar 

  29. Bai L, Chen W, Wang X, Tang H, Lin Y (2009) IKKβ-mediated nuclear factor-κB activation attenuates smac mimetic-induced apoptosis in cancer cells. Mol Cancer Ther 8:1636–1645

    Article  CAS  PubMed  Google Scholar 

  30. Ramirez RD, Sheridan S, Girard L et al (2004) Immortalization of human bronchial epithelial cells in the absence of viral oncoproteins. Cancer Res 64:9027–9034

    Article  CAS  PubMed  Google Scholar 

  31. Ju W, Wang X, Shi H, Chen W, Belinsky SA, Lin Y (2007) A critical role of luteolin-induced reactive oxygen species in blockage of tumor necrosis factor-activated nuclear factor-kappaB pathway and sensitization of apoptosis in lung cancer cells. Mol Pharmacol 71:1381–1388

    Article  CAS  PubMed  Google Scholar 

  32. Lin Y, Yang Q, Wang X, Liu ZG (2006) The essential role of the death domain kinase receptor-interacting protein in insulin growth factor-I-induced c-Jun N-terminal kinase activation. J Biol Chem 281:23525–23532

    Article  CAS  PubMed  Google Scholar 

  33. Lin Y, Ryan J, Lewis J, Wani MA, Lingrel JB, Liu ZG (2003) TRAF2 exerts its antiapoptotic effect by regulating the expression of Kruppel-like factor LKLF. Mol Cell Biol 23:5849–5856

    Article  CAS  PubMed  Google Scholar 

  34. Norbury CJ, Zhivotovsky B (2004) DNA damage-induced apoptosis. Oncogene 23:2797–2808

    Article  CAS  PubMed  Google Scholar 

  35. Meng F, Liu L, Chin PC, D’Mello SR (2002) Akt is a downstream target of NF-kappa B. J Biol Chem 277:29674–29680

    Article  CAS  PubMed  Google Scholar 

  36. Petersen SL, Peyton M, Minna JD, Wang X (2010) Overcoming cancer cell resistance to Smac mimetic induced apoptosis by modulating cIAP-2 expression. Proc Natl Acad Sci USA 107:11936–11941

    Article  CAS  PubMed  Google Scholar 

  37. Ramanathan RK, Trump DL, Eiseman JL et al (2005) Phase I pharmacokinetic-pharmacodynamic study of 17-(allylamino)-17-demethoxygeldanamycin (17AAG, NSC 330507), a novel inhibitor of heat shock protein 90, in patients with refractory advanced cancers. Clin Cancer Res 11:3385–3391

    Article  CAS  PubMed  Google Scholar 

  38. Neckers L, Neckers K (2005) Heat-shock protein 90 inhibitors as novel cancer chemotherapeutics—an update. Expert Opin Emerg Drugs 10:137–149

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was partly supported by a grant from NIEHS/NIH (R01ES017328) and Department of Energy Low Dose Radiation Research Program (DE-SC0001173).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Lin.

Additional information

Lang Bai and Shanling Xu contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 714 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, L., Xu, S., Chen, W. et al. Blocking NF-κB and Akt by Hsp90 inhibition sensitizes Smac mimetic compound 3-induced extrinsic apoptosis pathway and results in synergistic cancer cell death. Apoptosis 16, 45–54 (2011). https://doi.org/10.1007/s10495-010-0542-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-010-0542-4

Keywords

Navigation