Skip to main content

Advertisement

Log in

Mechanisms of apoptosis in Crustacea: what conditions induce versus suppress cell death?

  • Unusual Model Systems for Cell Death Research
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Arthropoda is the largest of all animal phyla and includes about 90% of extant species. Our knowledge about regulation of apoptosis in this phylum is largely based on findings for the fruit fly Drosophila melanogaster. Recent work with crustaceans shows that apoptotic proteins, and presumably mechanisms of cell death regulation, are more diverse in arthropods than appreciated based solely on the excellent work with fruit flies. Crustacean homologs exist for many major proteins in the apoptotic networks of mammals and D. melanogaster, but integration of these proteins into the physiology and pathophysiology of crustaceans is far from complete. Whether apoptosis in crustaceans is mainly transcriptionally regulated as in D. melanogaster (e.g., RHG ‘killer’ proteins), or rather is controlled by pro- and anti-apoptotic Bcl-2 family proteins as in vertebrates needs to be clarified. Some phenomena like the calcium-induced opening of the mitochondrial permeability transition pore (MPTP) are apparently lacking in crustaceans and may represent a vertebrate invention. We speculate that differences in regulation of the intrinsic pathway of crustacean apoptosis might represent a prerequisite for some species to survive harsh environmental insults. Pro-apoptotic stimuli described for crustaceans include UV radiation, environmental toxins, and a diatom-produced chemical that promotes apoptosis in offspring of a copepod. Mechanisms that serve to depress apoptosis include the inhibition of caspase activity by high potassium in energetically healthy cells, alterations in nucleotide abundance during energy-limited states like diapause and anoxia, resistance to opening of the calcium-induced MPTP, and viral accommodation during persistent viral infection. Characterization of the players, pathways, and their significance in the core machinery of crustacean apoptosis is revealing new insights for the field of cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116:205–219

    PubMed  Google Scholar 

  2. Hassanin A (2006) Phylogeny of Arthropoda inferred from mitochondrial sequences: strategies for limiting the misleading effects of multiple changes in pattern and rates of substitution. Mol Phylogenet Evol 38:100–116

    PubMed  Google Scholar 

  3. Bottger A, Alexandrova O (2007) Programmed cell death in Hydra. Semin Cancer Biol 17:134–146

    PubMed  Google Scholar 

  4. Zmasek CM, Zhang Q, Ye Y, Godzik A (2007) Surprising complexity of the ancestral apoptosis network. Genome Biol 8:R226

    PubMed  Google Scholar 

  5. Robertson AJ, Croce J, Carbonneau S et al (2006) The genomic underpinnings of apoptosis in Strongylocentrotus purpuratus. Dev Biol 300:321–334

    PubMed  Google Scholar 

  6. Oberst A, Bender C, Green DR (2008) Living with death: the evolution of the mitochondrial pathway of apoptosis in animals. Cell Death Differ 15:1139–1146

    PubMed  Google Scholar 

  7. Hand SC, Menze MA (2008) Mitochondria in energy-limited states: mechanisms that blunt the signaling of cell death. J Exp Biol 211:1829–1840

    PubMed  Google Scholar 

  8. Tran SE, Meinander A, Eriksson JE (2004) Instant decisions: transcription-independent control of death-receptor-mediated apoptosis. Trends Biochem Sci 29:601–608

    PubMed  Google Scholar 

  9. Ferri KF, Kroemer G (2001) Organelle-specific initiation of cell death pathways. Nat Cell Biol 3:E255–E263

    PubMed  Google Scholar 

  10. Kumar S (2007) Caspase function in programmed cell death. Cell Death Differ 14:32–43

    PubMed  Google Scholar 

  11. Salvesen GS, Riedl SJ (2008) Caspase mechanisms. In: Khosravi-Far R, White E (eds) Programmed cell death in cancer progression and therapy. Springer, Netherlands, pp 13–23

    Google Scholar 

  12. Salvesen GS, Abrams JM (2004) Caspase activation—stepping on the gas or releasing the brakes? Lessons from humans and flies. Oncogene 23:2774–2784

    PubMed  Google Scholar 

  13. Liston P, Fong WG, Korneluk RG (2003) The inhibitors of apoptosis: there is more to life than Bcl2. Oncogene 22:8568–8580

    PubMed  Google Scholar 

  14. Degterev A, Boyce M, Yuan J (2003) A decade of caspases. Oncogene 22:8543–8567

    PubMed  Google Scholar 

  15. Moreno E, Yan M, Basler K (2002) Evolution of TNF signaling mechanisms: JNK-dependent apoptosis triggered by Eiger, the Drosophila homolog of the TNF superfamily. Curr Biol 12:1263–1268

    PubMed  Google Scholar 

  16. Kanda H, Igaki T, Kanuka H, Yagi T, Miura M (2002) Wengen, a member of the Drosophila tumor necrosis factor receptor superfamily, is required for Eiger signaling. J Biol Chem 277:28372–28375

    PubMed  Google Scholar 

  17. Kauppila S, Maaty WS, Chen P et al (2003) Eiger and its receptor, Wengen, comprise a TNF-like system in Drosophila. Oncogene 22:4860–4867

    PubMed  Google Scholar 

  18. Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9:47–59

    PubMed  Google Scholar 

  19. Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87:99–163

    PubMed  Google Scholar 

  20. Menze MA, Hand SC (2007) Caspase activity during cell stasis: avoidance of apoptosis in an invertebrate extremophile, Artemia franciscana. Am J Physiol Regul Integr Comp Physiol 292:R2039–R2047

    PubMed  Google Scholar 

  21. Menze MA, Hutchinson K, Laborde SM, Hand SC (2005) Mitochondrial permeability transition in the crustacean Artemia franciscana: absence of a calcium-regulated pore in the face of profound calcium storage. Am J Physiol Regul Integr Comp Physiol 289:R68–R76

    PubMed  Google Scholar 

  22. Leu JH, Wang HC, Kou GH, Lo CF (2008) Penaeus monodon caspase is targeted by a white spot syndrome virus anti-apoptosis protein. Dev Comp Immunol 32:476–486

    PubMed  Google Scholar 

  23. Leu JH, Kuo YC, Kou GH, Lo CH (2008) Molecular cloning and characterization of an inhibitor of apoptosis protein (IAP) from the tiger shrimp, Penaeus monodon. Dev Comp Immunol 32:121–133

    PubMed  Google Scholar 

  24. Phongdara A, Wanna W, Chotigeat W (2006) Molecular cloning and expression of caspase from white shrimp Penaeus merguiensis. Aquaculture 252:114–120

    Google Scholar 

  25. Wongprasert K, Sangsuriya P, Phongdara A, Senapin S (2007) Cloning and characterization of a caspase gene from black tiger shrimp (Penaeus monodon)-infected with white spot syndrome virus (WSSV). J Biotechnol 131:9–19

    PubMed  Google Scholar 

  26. Wang C, Youle RJ (2009) The role of mitochondria in apoptosis. Annu Rev Genet 10.1146/annurev-genet-102108-134850

  27. Abdelwahid E, Yokokura T, Krieser RJ, Balasundaram S, Fowle WH, White K (2007) Mitochondrial disruption in Drosophila apoptosis. Dev Cell 12:793–806

    PubMed  Google Scholar 

  28. Krieser RJ, White K (2009) Inside an enigma: do mitochondria contribute to cell death in Drosophila? Apoptosis 14:961–968

    PubMed  Google Scholar 

  29. Dudgeon C, Qiu W, Sun S, Zhang L, Yu J (2009) Transcriptional regulation of apoptosis. In: Yin XM, Dong Z (eds) Essentials of apoptosis. Humana Press, New York, pp 239–260

    Google Scholar 

  30. Srinivasula SM, Ashwell JD (2008) IAPs: what’s in a name? Mol Cell 30:123–135

    PubMed  Google Scholar 

  31. Hay BA, Guo M (2006) Caspase-dependent cell death in Drosophila. Annu Rev Cell Dev Biol 22:623–650

    PubMed  Google Scholar 

  32. Clark AG, Eisen MB, Smith DR et al (2007) Evolution of genes and genomes on the Drosophila phylogeny. Nature 450:203–218

    PubMed  Google Scholar 

  33. Tenev T, Zachariou A, Wilson R, Paul A, Meier P (2002) Jafrac2 is an IAP antagonist that promotes cell death by liberating Dronc from DIAP1. EMBO J 21:5118–5129

    PubMed  Google Scholar 

  34. Igaki T, Suzuki Y, Tokushige N, Aonuma H, Takahashi R, Miura M (2007) Evolution of mitochondrial cell death pathway: proapoptotic role of HtrA2/Omi in Drosophila. Biochem Biophys Res Commun 356:993–997

    PubMed  Google Scholar 

  35. Srinivasula SM, Gupta S, Datta P et al (2003) Inhibitor of apoptosis proteins are substrates for the mitochondrial serine protease Omi/HtrA2. J Biol Chem 278:31469–31472

    PubMed  Google Scholar 

  36. Iuchi Y, Okada F, Tsunoda S et al (2009) Peroxiredoxin 4 knockout results in elevated spermatogenic cell death via oxidative stress. Biochem J 419:149–158

    PubMed  Google Scholar 

  37. Creagh EM, Conroy H, Martin SJ (2003) Caspase-activation pathways in apoptosis and immunity. Immunol Rev 193:10–21

    PubMed  Google Scholar 

  38. Cory S, Huang DC, Adams JM (2003) The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene 22:8590–8607

    PubMed  Google Scholar 

  39. Bao Q, Shi Y (2007) Apoptosome: a platform for the activation of initiator caspases. Cell Death Differ 14:56–65

    PubMed  Google Scholar 

  40. Shi Y (2006) Mechanical aspects of apoptosome assembly. Curr Opin Cell Biol 18:677

    PubMed  Google Scholar 

  41. Cho DH, Hong YM, Lee HJ et al (2004) Induced inhibition of ischemic/hypoxic injury by APIP, a novel Apaf-1-interacting protein. J Biol Chem 279:39942–39950

    PubMed  Google Scholar 

  42. Cho DH, Lee HJ, Kim HJ et al (2007) Suppression of hypoxic cell death by APIP-induced sustained activation of AKT and ERK1/2. Oncogene 26:2809–2814

    PubMed  Google Scholar 

  43. Saelens X, Festjens N, Vande Walle L, van Gurp M, van Loo G, Vandenabeele P (2004) Toxic proteins released from mitochondria in cell death. Oncogene 23:2861–2874

    PubMed  Google Scholar 

  44. Yu X, Wang L, Acehan D, Wang X, Akey CW (2006) Three-dimensional structure of a double apoptosome formed by the Drosophila Apaf-1 related killer. J Mol Biol 355:577–589

    PubMed  Google Scholar 

  45. Wang X, Wang J, Gengyo-Ando K et al (2007) C. elegans mitochondrial factor WAH-1 promotes phosphatidylserine externalization in apoptotic cells through phospholipid scramblase SCRM-1. Nat Cell Biol 9:541–549

    PubMed  Google Scholar 

  46. Joza N, Pospisilik JA, Hangen E et al (2009) AIF: not just an apoptosis-inducing factor. Ann N Y Acad Sci 1171:2–11

    PubMed  Google Scholar 

  47. Parrish J, Li L, Klotz K, Ledwich D, Wang X, Xue D (2001) Mitochondrial endonuclease G is important for apoptosis in C. elegans. Nature 412:90–94

    PubMed  Google Scholar 

  48. Temme C, Weissbach R, Lilie H et al (2009) The Drosophila melanogaster gene cg4930 encodes a high affinity inhibitor for endonuclease G. J Biol Chem 284:8337–8348

    PubMed  Google Scholar 

  49. Joza N, Galindo K, Pospisilik JA et al (2008) The molecular archaeology of a mitochondrial death effector: AIF in Drosophila. Cell Death Differ 15:1009–1018

    PubMed  Google Scholar 

  50. Deveraux QL, Takahashi R, Salvesen GS, Reed JC (1997) X-linked IAP is a direct inhibitor of cell-death proteases. Nature 388:300–304

    PubMed  Google Scholar 

  51. Xue L, Igaki T, Kuranaga E, Kanda H, Miura M, Xu T (2007) Tumor suppressor CYLD regulates JNK-induced cell death in Drosophila. Dev Cell 13:446–454

    PubMed  Google Scholar 

  52. Lee NK, Lee SY (2002) Modulation of life and death by the tumor necrosis factor receptor-associated factors (TRAFs). J Biochem Mol Biol 35:61–66

    PubMed  Google Scholar 

  53. Haworth RA, Hunter DR (1979) The Ca2+ -induced membrane transition in mitochondria. II. Nature of the Ca2+ trigger site. Arch Biochem Biophys 195:460–467

    PubMed  Google Scholar 

  54. Hunter DR, Haworth RA (1979) The Ca2+ -induced membrane transition in mitochondria. I. The protective mechanisms. Arch Biochem Biophys 195:453–459

    PubMed  Google Scholar 

  55. Gunter TE, Pfeiffer DR (1990) Mechanisms by which mitochondria transport calcium. Am J Physiol 258:C755–C786

    PubMed  Google Scholar 

  56. Halestrap AP, Doran E, Gillespie JP, O’Toole A (2000) Mitochondria and cell death. Biochem Soc Trans 28:170–177

    PubMed  Google Scholar 

  57. Hunter DR, Haworth RA, Southard JH (1976) Relationship between configuration, function, and permeability in calcium-treated mitochondria. J Biol Chem 251:5069–5077

    PubMed  Google Scholar 

  58. Bernardi P (1996) The permeability transition pore. Control points of a cyclosporin A-sensitive mitochondrial channel involved in cell death. Biochim Biophys Acta 1275:5–9

    PubMed  Google Scholar 

  59. Bernardi P, Krauskopf A, Basso E et al (2006) The mitochondrial permeability transition from in vitro artifact to disease target. Febs J 273:2077–2099

    PubMed  Google Scholar 

  60. Petronilli V, Cola C, Bernardi P (1993) Modulation of the mitochondrial cyclosporin A-sensitive permeability transition pore. II. The minimal requirements for pore induction underscore a key role for transmembrane electrical potential, matrix pH, and matrix Ca2+. J Biol Chem 268:1011–1016

    PubMed  Google Scholar 

  61. Baines CP, Kaiser RA, Sheiko T, Craigen WJ, Molkentin JD (2007) Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nat Cell Biol 9:550–555

    PubMed  Google Scholar 

  62. Krauskopf A, Eriksson O, Craigen WJ, Forte MA, Bernardi P (2006) Properties of the permeability transition in VDAC1(−/−) mitochondria. Biochim Biophys Acta 1757:590–595

    PubMed  Google Scholar 

  63. Kokoszka JE, Waymire KG, Levy SE et al (2004) The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature 427:461–465

    PubMed  Google Scholar 

  64. Baines CP, Kaiser RA, Purcell NH et al (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434:658–662

    PubMed  Google Scholar 

  65. Basso E, Fante L, Fowlkes J, Petronilli V, Forte MA, Bernardi P (2005) Properties of the permeability transition pore in mitochondria devoid of Cyclophilin D. J Biol Chem 280:18558–18561

    PubMed  Google Scholar 

  66. Leung AW, Varanyuwatana P, Halestrap AP (2008) The mitochondrial phosphate carrier interacts with cyclophilin D and may play a key role in the permeability transition. J Biol Chem 283:26312–26323

    PubMed  Google Scholar 

  67. Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312

    PubMed  Google Scholar 

  68. Zamzami N, Kroemer G (2001) The mitochondrion in apoptosis: how Pandora’s box opens. Nat Rev Mol Cell Biol 2:67–71

    PubMed  Google Scholar 

  69. Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305:626–629

    PubMed  Google Scholar 

  70. Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS (2004) Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol 287:C817–C833

    PubMed  Google Scholar 

  71. Kakkar P, Singh BK (2007) Mitochondria: a hub of redox activities and cellular distress control. Mol Cell Biochem 305:235–253

    PubMed  Google Scholar 

  72. Orrenius S, Gogvadze V, Zhivotovsky B (2007) Mitochondrial oxidative stress: implications for cell death. Annu Rev Pharmacol Toxicol 47:143–183

    PubMed  Google Scholar 

  73. Ryter SW, Kim HP, Hoetzel A et al (2007) Mechanisms of cell death in oxidative stress. Antioxid Redox Signal 9:49–89

    PubMed  Google Scholar 

  74. Holmann JD, Hand SC (2009) Metabolic depression is delayed and mitochondrial impairment averted during prolonged anoxia in the ghost shrimp, Lepidophthalmus louisianensis (Schmitt, 1935). J Exp Mar Biol Ecol 376:85–93

    Google Scholar 

  75. Andreyev AY, Fahy B, Fiskum G (1998) Cytochrome c release from brain mitochondria is independent of the mitochondrial permeability transition. FEBS Lett 439:373–376

    PubMed  Google Scholar 

  76. Chalmers S, Nicholls DG (2003) The relationship between free and total calcium concentrations in the matrix of liver and brain mitochondria. J Biol Chem 278:19062–19070

    PubMed  Google Scholar 

  77. Nicholls DG, Chalmers S (2004) The integration of mitochondrial calcium transport and storage. J Bioenerg Biomembr 36:277–281

    PubMed  Google Scholar 

  78. He L, Lemasters JJ (2002) Regulated and unregulated mitochondrial permeability transition pores: a new paradigm of pore structure and function? FEBS Lett 512:1–7

    PubMed  Google Scholar 

  79. Sokolova IM, Evans S, Hughes FM (2004) Cadmium-induced apoptosis in oyster hemocytes involves disturbance of cellular energy balance but no mitochondrial permeability transition. J Exp Biol 207:3369–3380

    PubMed  Google Scholar 

  80. Toninello A, Salvi M, Colombo L (2000) The membrane permeability transition in liver mitochondria of the great green goby Zosterisessor ophiocephalus (Pallas). J Exp Biol 203(Pt 22):3425–3434

    PubMed  Google Scholar 

  81. Krumschnabel G, Manzl C, Berger C, Hofer B (2005) Oxidative stress, mitochondrial permeability transition, and cell death in Cu-exposed trout hepatocytes. Toxicol Appl Pharmacol 209:62–73

    Google Scholar 

  82. Savina MV, Emelyanova LV, Belyaeva EA (2006) Bioenergetic parameters of lamprey and frog liver mitochondria during metabolic depression and activity. Comp Biochem Physiol B Biochem Mol Biol 145:296–305

    PubMed  Google Scholar 

  83. Hughes FM Jr, Cidlowski JA (1999) Potassium is a critical regulator of apoptotic enzymes in vitro and in vivo. Adv Enzyme Regul 39:157–171

    PubMed  Google Scholar 

  84. Bortner CD, Cidlowski JA (1999) Caspase independent/dependent regulation of K(+), cell shrinkage, and mitochondrial membrane potential during lymphocyte apoptosis. J Biol Chem 274:21953–21962

    PubMed  Google Scholar 

  85. Hughes FM Jr, Bortner CD, Purdy GD, Cidlowski JA (1997) Intracellular K+ suppresses the activation of apoptosis in lymphocytes. J Biol Chem 272:30567–30576

    PubMed  Google Scholar 

  86. Beem E, Holliday LS, Segal MS (2004) The 1.4-MDa apoptosome is a critical intermediate in apoptosome maturation. Am J Physiol Cell Physiol 287:C664–C672

    PubMed  Google Scholar 

  87. Cain K, Langlais C, Sun XM, Brown DG, Cohen GM (2001) Physiological concentrations of K+ inhibit cytochrome c-dependent formation of the apoptosome. J Biol Chem 276:41985–41990

    PubMed  Google Scholar 

  88. Kulms D, Schwarz T (2002) Independent contribution of three different pathways to ultraviolet-B-induced apoptosis. Biochem Pharmacol 64:837–841

    PubMed  Google Scholar 

  89. Petit-Frere C, Capulas E, Lowe JE et al (2000) Ultraviolet-B-induced apoptosis and cytokine release in xeroderma pigmentosum keratinocytes. J Invest Dermatol 115:687–693

    PubMed  Google Scholar 

  90. Patrick MH (1977) Studies on thymine-derived UV photoproducts in DNA–I. Formation and biological role of pyrimidine adducts in DNA. Photochem Photobiol 25:357–372

    PubMed  Google Scholar 

  91. Murphy G, Young AR, Wulf HC, Kulms D, Schwarz T (2001) The molecular determinants of sunburn cell formation. Exp Dermatol 10:155–160

    PubMed  Google Scholar 

  92. Chouinard N, Valerie K, Rouabhia M, Huot J (2002) UVB-mediated activation of p38 mitogen-activated protein kinase enhances resistance of normal human keratinocytes to apoptosis by stabilizing cytoplasmic p53. Biochem J 365:133–145

    PubMed  Google Scholar 

  93. She QB, Chen N, Dong Z (2000) ERKs and p38 kinase phosphorylate p53 protein at serine 15 in response to UV radiation. J Biol Chem 275:20444–20449

    PubMed  Google Scholar 

  94. Reed JC (1997) Double identity for proteins of the Bcl-2 family. Nature 387:773–776

    PubMed  Google Scholar 

  95. Miguel NC, Wajsenzon IJ, Takiya CM et al (2007) Catalase, Bax and p53 expression in the visual system of the crab Ucides cordatus following exposure to ultraviolet radiation. Cell Tissue Res 329:159–168

    PubMed  Google Scholar 

  96. Tomicic MT, Christmann M, Kaina B (2005) Apoptosis in UV-C light irradiated p53 wild-type, apaf-1 and p53 knockout mouse embryonic fibroblasts: interplay of receptor and mitochondrial pathway. Apoptosis 10:1295–1304

    PubMed  Google Scholar 

  97. de Oliveira Miguel NC, Meyer-Rochow VB, Allodi S (2002) Ultrastructural study of first and second order neurons in the visual system of the crab Ucides cordatus following exposure to ultraviolet radiation. Micron 33:627–637

    PubMed  Google Scholar 

  98. Bonner WM (2003) Low-dose radiation: thresholds, bystander effects, and adaptive responses. P Natl Acad Sci USA 100:4973–4975

    Google Scholar 

  99. Mothersill C, Lyng F, Mulford A et al (2001) Effect of low doses of ionizing radiation on cells cultured from the hematopoietic tissue of the Dublin Bay prawn, Nephrops norvegicus. Radiat Res 156:241–250

    PubMed  Google Scholar 

  100. Lyng FM, Reilly S, Seymour CB, Mothersill CE (1996) Morphological evidence of radiation induced delayed apoptosis in the distant progeny of irradiated cells. Radiat Environ Biophys 35:237–283

    Google Scholar 

  101. Peakall DB (1975) Phthalate esters: occurrence and biological effects. Residue Rev 54:1–41

    PubMed  Google Scholar 

  102. Sung HH, Kao WY, Su YJ (2003) Effects and toxicity of phthalate esters to hemocytes of giant freshwater prawn, Macrobrachium rosenbergii. Aquat Toxicol 64:25–37

    PubMed  Google Scholar 

  103. Lotufo GR, Farrar JD, Inouye LS, Bridges TS, Ringelberg DB (2001) Toxicity of sediment-associated nitroaromatic and cyclonitramine compounds to benthic invertebrates. Environ Toxicol Chem 20:1762–1771

    PubMed  Google Scholar 

  104. Oweson CA, Baden SP, Hernroth BE (2006) Manganese induced apoptosis in haematopoietic cells of Nephrops norvegicus (L.). Aquat Toxicol 77:322–328

    PubMed  Google Scholar 

  105. Cheng SH, Chan KW, Chan PK, So CH, Lam PKS, Wu RSS (2004) Whole-mount in situ TUNEL method revealed ectopic pattern of apoptosis in cadmium treated naupliar larvae of barnacle (Balanus amphitrite, Darwin). Chemosphere 55:1387–1394

    PubMed  Google Scholar 

  106. Prabhakaran K, Ghosh D, Chapman GD, Gunasekar PG (2008) Molecular mechanism of manganese exposure-induced dopaminergic toxicity. Brain Res Bull 76:361–367

    PubMed  Google Scholar 

  107. Kitazawa M, Anantharam V, Yang Y, Hirata Y, Kanthasamy A, Kanthasamy AG (2005) Activation of protein kinase C delta by proteolytic cleavage contributes to manganese-induced apoptosis in dopaminergic cells: protective role of Bcl-2. Biochem Pharmacol 69:133–146

    PubMed  Google Scholar 

  108. Miralto A, Barone G, Romano G et al (1999) The insidious effect of diatoms on copepod reproduction. Nature 402:173–176

    Google Scholar 

  109. Paffenhofer GA, Ianora A, Miralto A et al (2005) Colloquium on diatom-copepod interactions. Mar Ecol-Prog Ser 286:293–305

    Google Scholar 

  110. Romano G, Russo GL, Buttino I, Ianora A, Miralto A (2003) A marine diatom-derived aldehyde induces apoptosis in copepod and sea urchin embryos. J Exp Biol 206:3487–3494

    PubMed  Google Scholar 

  111. Ianora A, Miralto A, Poulet SA et al (2004) Aldehyde suppression of copepod recruitment in blooms of a ubiquitous planktonic diatom. Nature 429:403–407

    PubMed  Google Scholar 

  112. Clegg JS, Drinkwater LE, Sorgeloos P (1996) The metabolic status of diapause embryos of Artemia franciscana (SFB). Physiol Zool 69:49–66

    Google Scholar 

  113. Reynolds JA, Hand SC (2009) Embryonic diapause highlighted by differential expression of mRNAs for ecdysteroidogenesis, transcription and lipid sparing in the cricket Allonemobius socius. J Exp Biol 212:2075–2084

    PubMed  Google Scholar 

  114. Reynolds JA, Hand SC (2009) Decoupling development and energy flow during embryonic diapause in the cricket, Allonemobius socius. J Exp Biol 212:2065–2074

    PubMed  Google Scholar 

  115. Brand MD, Chien LF, Ainscow EK, Rolfe DF, Porter RK (1994) The causes and functions of mitochondrial proton leak. Biochim Biophys Acta 1187:132–139

    PubMed  Google Scholar 

  116. Chereau D, Zou H, Spada AP, Wu JC (2005) A nucleotide binding site in caspase-9 regulates apoptosome activation. Biochemistry 44:4971–4976

    PubMed  Google Scholar 

  117. Chandra D, Bratton SB, Person MD et al (2006) Intracellular nucleotides act as critical prosurvival factors by binding to cytochrome C and inhibiting apoptosome. Cell 125:1333–1346

    PubMed  Google Scholar 

  118. Clegg J (1997) Embryos of Artemia franciscana survive four years of continuous anoxia: the case for complete metabolic rate depression. J Exp Biol 200:467–475

    PubMed  Google Scholar 

  119. Stocco DM, Beers PC, Warner AH (1972) Effect of anoxia on nucleotide metabolism in encysted embryos of the brine shrimp. Dev Biol 27:479–493

    PubMed  Google Scholar 

  120. Carpenter JF, Hand SC (1986) Arrestment of carbohydrate-metabolism during anaerobic dormancy and aerobic acidosis in Artemia embryos—determination of Ph-sensitive control points. J Comp Physiol B 156:451–459

    Google Scholar 

  121. Busa WB, Crowe JH, Matson GB (1982) Intracellular Ph and the metabolic status of dormant and developing Artemia embryos. Arch Biochem Biophys 216:711–718

    PubMed  Google Scholar 

  122. Finamore FJ, Warner AH (1963) The occurrence of P1, P4-diguanosine 5’-tetraphosphate in brine shrimp eggs. J Biol Chem 238:344–348

    PubMed  Google Scholar 

  123. Roulston A, Marcellus RC, Branton PE (1999) Viruses and apoptosis. Annu Rev Microbiol 53:577–628

    PubMed  Google Scholar 

  124. McLean JE, Ruck A, Shirazian A, Pooyaei-Mehr F, Zakeri ZF (2008) Viral manipulation of cell death. Curr Pharm Des 14:198–220

    PubMed  Google Scholar 

  125. Galluzzi L, Brenner C, Morselli E, Touat Z, Kroemer G (2008) Viral control of mitochondrial apoptosis. PLoS Pathog 4:e1000018

    PubMed  Google Scholar 

  126. Hilleman MR (2004) Strategies and mechanisms for host and pathogen survival in acute and persistent viral infections. Proc Natl Acad Sci USA 101(Suppl 2):14560–14566

    PubMed  Google Scholar 

  127. Irusta PM, Chen YB, Hardwick JM (2003) Viral modulators of cell death provide new links to old pathways. Curr Opin Cell Biol 15:700–705

    PubMed  Google Scholar 

  128. Everett H, Barry M, Sun X et al (2002) The myxoma poxvirus protein, M11L, prevents apoptosis by direct interaction with the mitochondrial permeability transition pore. J Exp Med 196:1127–1139

    PubMed  Google Scholar 

  129. Goldmacher VS (2002) vMIA, a viral inhibitor of apoptosis targeting mitochondria. Biochimie 84:177–185

    PubMed  Google Scholar 

  130. Arnoult D, Bartle LM, Skaletskaya A et al (2004) Cytomegalovirus cell death suppressor vMIA blocks Bax- but not Bak-mediated apoptosis by binding and sequestering Bax at mitochondria. Proc Natl Acad Sci U S A 101:7988–7993

    PubMed  Google Scholar 

  131. Flegel TW (2007) Update on viral accommodation, a model for host-viral interaction in shrimp and other arthropods. Dev Comp Immunol 31:217–231

    PubMed  Google Scholar 

  132. Bayne CJ (2003) Origins and evolutionary relationships between the innate and adaptive arms of immune systems. Integr Comp Biol 43:293–299

    Google Scholar 

  133. Soderhall K (1999) Special issue: invertebrate immunity. Dev Comp Immunol 23:263–266

    PubMed  Google Scholar 

  134. Wu JL, Muroga K (2004) Apoptosis does not play an important role in the resistance of ‘immune’ Penaeus japonicus against white spot syndrome virus. J Fish Dis 27:15–21

    PubMed  Google Scholar 

  135. Bangrak P, Graidist P, Chotigeat W, Phongdara A (2004) Molecular cloning and expression of a mammalian homologue of a translationally controlled tumor protein (TCTP) gene from Penaeus monodon shrimp. J Biotechnol 108:219–226

    PubMed  Google Scholar 

  136. Li F, Zhang D, Fujise K (2001) Characterization of fortilin, a novel antiapoptotic protein. J Biol Chem 276:47542–47549

    PubMed  Google Scholar 

  137. Zhang D, Li F, Weidner D, Mnjoyan ZH, Fujise K (2002) Physical and functional interaction between myeloid cell leukemia 1 protein (MCL1) and Fortilin. The potential role of MCL1 as a fortilin chaperone. J Biol Chem 277:37430–37438

    PubMed  Google Scholar 

  138. Molthathong S, Senapin S, Klinbunga S, Puanglarp N, Rojtinnakorn J, Flegel TW (2008) Down-regulation of defender against apoptotic death (DAD1) after yellow head virus (YHV) challenge in black tiger shrimp Penaeus monodon. Fish Shellfish Immun 24:173–179

    Google Scholar 

  139. Lindholm P, Kuittinen T, Sorri O et al (2000) Glycosylation of phytepsin and expression of dad1, dad2 and ost1 during onset of cell death in germinating barley scutella. Mech Develop 93:169–173

    Google Scholar 

  140. Molthathong S, Buaklin A, Senapin S, Klinbunga S, Rojtinnakorn J, Flegel TW (2008) Up-regulation of Ribophorin l after yellow head virus (YHV) challenge in black tiger shrimp Penaeus monodon. Fish Shellfish Immun 25:40–46

    Google Scholar 

  141. Spierings D, McStay G, Saleh M et al (2005) Connected to death: the (unexpurgated) mitochondrial pathway of apoptosis. Science 310:66–67

    PubMed  Google Scholar 

  142. Chang CW, Li HC, Hsu CF, Chang CY, Lo SY (2009) Increased ATP generation in the host cell is required for efficient vaccinia virus production. J Biomed Sci 16:80

    PubMed  Google Scholar 

  143. Harzsch S, Benton J, Dawirs RR, Beltz B (1999) A new look at embryonic development of the visual system in decapod crustaceans: neuropil formation, neurogenesis, and apoptotic cell death. J Neurobiol 39:294–306

    PubMed  Google Scholar 

  144. Harzsch S, Miller J, Benton J, Beltz B (1999) From embryo to adult: persistent neurogenesis and apoptotic cell death shape the lobster deutocerebrum. J Neurosci 19:3472–3485

    PubMed  Google Scholar 

  145. Buchanan SS, Menze MA, Hand SC, Pyatt DW, Carpenter JF (2005) Cryopreservation of human hematopoetic stem and progenitor cells loaded with trehalose: transient permeabilization via the adenosine triphosphate-dependent P2Z receptor channel. Cell Preserv Tech 3:212–222

    Google Scholar 

  146. Crowe JH, Crowe LM, Tablin F (2005) Stabilization of dry mammalian cells: lessons from nature. Integr Comp Biol 44:542

    Google Scholar 

  147. Menze MA, Clavenna MJ, Hand SC (2005) Depression of cell metabolism and proliferation by membrane-permeable and -impermeable modulators: role for AMP-to-ATP ratio. Am J Physiol Regul Integr Comp Physiol 288:R501–R510

    PubMed  Google Scholar 

  148. Hand SC, Hagedorn M (2008) New approaches for cell and animal preservation: lessons from aquatic organisms. In: Walsh PJ, Smith LE, Fleming LE, Solo-Gabriele H, Gerwick WH (eds) Oceans and human health: risks and remedies from the seas. Academic Press, London, pp 611–629

    Google Scholar 

  149. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH Grants 1-RO1-GM071345-01 and 2-RO1-DK046270-14A1, and NSF Grant IOS-0920254.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Menze.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menze, M.A., Fortner, G., Nag, S. et al. Mechanisms of apoptosis in Crustacea: what conditions induce versus suppress cell death?. Apoptosis 15, 293–312 (2010). https://doi.org/10.1007/s10495-009-0443-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-009-0443-6

Keywords

Navigation