Skip to main content

Advertisement

Log in

Conjugation of doxorubicin to cell penetrating peptides sensitizes human breast MDA-MB 231 cancer cells to endogenous TRAIL-induced apoptosis

  • Original paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Previous work from our laboratory has shown that coupling doxorubicin (Dox) to cell penetrating peptides (Dox–CPPs) is a good strategy to overcome Dox resistance in MDA-MB 231 breast cancer cells. We also reported that, in contrast to unconjugated Dox-induced cell death, the increase in apoptotic response does not involve the mitochondrial apoptotic pathway. In this study, we demonstrate that both Dox and Dox–CPPs can increase the density of the TRAIL receptors DR4 and DR5 at the plasma membrane and moderately sensitize MDA-MB 231 cells to exogeneously added recombinant TRAIL, as has already been shown for other chemotherapeutic drugs. Moreover, we show that Dox–CPPs, used alone, induce the clustering of TRAIL receptors into ceramide-enriched membrane lipid rafts, a property not shared by unconjugated Dox and that this process is due to the generation of ceramide during Dox–CPPs treatment. In addition, MDA-MB 231 cells were found to express TRAIL and we show that the increased apoptotic rate induced by Dox–CPPs is due to the sensitization of MDA-MB 231 cells to endogenous TRAIL. The capacity of Dox–CPPs to sensitize cancer cells to physiologic amounts of TRAIL suggests that, in addition to their efficiency in combination chemotherapy, these compounds might increase the response of tumor cells to cytotoxic lymphocyte-mediated killing via TRAIL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ASM:

Acid sphingomyelinase

CPP:

Cell penetrating peptide

Dox:

Doxorubicine

FACS:

Fluorescence activated cell sorting

Fc-R1, Fc-R2:

Recombinant proteins composed of IgG Fc fused to TRAIL-R or TRAIL-R2, respectively

FITC:

Fluoresceine isothiocyanate

MCa:

Maurocalcine

MCaAbu :

Maurocalcine analogue with cysteine residues replaced with l-α-aminobutyric acid

MCD:

Methyl-β-cyclodextrin

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide

NAC:

N-acetylcysteine

PBS:

Phosphate buffered saline

Pen:

Penetratin

ROS:

Reactive oxygen species

TRAIL:

TNF-related-apoptosis-inducing-ligand

References

  1. Vogelstein B, Kinzler KW (1993) The multistep nature of cancer. Trends Genet 9:138–141

    Article  PubMed  CAS  Google Scholar 

  2. David BF, Pieter RC (2008) Liposomal nanomedicines. Expert Opin Drug Deliv 5:25–44. doi:10.1517/17425247.5.1.25

    Article  Google Scholar 

  3. Gupta B, Levchenko TS, Torchilin VP (2005) Intracellular delivery of large molecules and small particles by cell-penetrating proteins and peptides. Adv Drug Deliv Rev 28:637–651. doi:10.1016/j.addr.2004.10.007

    Article  Google Scholar 

  4. Aroui S, Ram N, Appaix F, Ronjat M, Kenani A, Pirollet F, De Waard M (2009) Maurocalcine as a non toxic drug carrier overcomes doxorubicin resistance in the cancer cell line MDA-MB 231. Pharm Res 28:836–845. doi:10.1007/s11095-008-9782-110

    Article  Google Scholar 

  5. Aroui S, Brahim S, De Waard M, Bréard J, Kenani A (2009) Efficient induction of apoptosis by doxorubicin coupled to cell-penetrating peptides compared to unconjugated doxorubicin in the human breast cancer cell line MDA-MB 231. Cancer Lett Article in Press, Corrected Proof. doi: 10.1016/j.canlet.2009.04.044

  6. Wesselborg S, Engels IH, Rossmann E, Los M, Schulze-Osthoff K (1999) Anticancer drugs induce caspase-8/FLICE activation and apoptosis in the absence of CD95 receptor/ligand interaction. Blood 93:3053–3063

    PubMed  CAS  Google Scholar 

  7. Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ, Debatin KM, Krammer PH, Peter ME (1998) Two CD95 (APO-1/Fas) signaling pathways. EMBO J 7:1675–1687. doi:10.1093/emboj/17.6.1675

    Article  Google Scholar 

  8. Butler LM, Liapis V, Bouralexis S, Welldon K, Hay S, Thai le M, Labrinidis A, Tilley WD, Findlay DM, Evdokiou A (2006) The histone deacetylase inhibitor, suberoylanilide hydroxamic acid, overcomes resistance of human breast cancer cells to Apo2L/TRAIL. Int J Cancer 119:944–954. doi:10.1002/ijc.21939

    Article  PubMed  CAS  Google Scholar 

  9. Lagadec C, Adriaenssens E, Toillon RA, Chopin V, Romon R, Van Coppenolle F, Hondermarck H, Le Bourhis X (2008) Tamoxifen and TRAIL synergistically induce apoptosis in breast cancer cells. Oncogene 28:1472–1477. doi:10.1038/sj.onc.1210749

    Article  Google Scholar 

  10. Pitti RM, Marsters SA, Ruppert S, Donahue CJ, Moore A, Ashkenazi A (1996) Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem 271:12687–12690

    Article  PubMed  CAS  Google Scholar 

  11. Baker SJ, Reddy EP (1998) Modulation of life and death by the TNF receptor superfamily. Oncogene 17:3261–3270

    Article  PubMed  Google Scholar 

  12. Dumitru CA, Carpinteiro TT, Hengge RU, Gulbins E (2007) Doxorubicin enhances TRAIL-induced cell death via ceramide-enriched membrane platforms. Apoptosis 12:1533–1541. doi:10.1007/s10495-007-0081-9

    Article  PubMed  CAS  Google Scholar 

  13. Obeid LM, Linardic CM, Karolak LA, Hannun YA (1993) Programmed cell death induced by ceramide. Science 259:1769–1771. doi:10.1126/science.8456305

    Article  PubMed  CAS  Google Scholar 

  14. Bollinger CR, Teichgraber V, Gulbins E (2005) Ceramide-enriched membrane domains. Biochim Biophys Acta 1746:284–294. doi:10.1016/j.bbamcr.2005.09.001

    Article  PubMed  CAS  Google Scholar 

  15. Schutze S, Potthoff K, Machleidt T, Berkovic D, Wiegmann K, Krone M (1992) TNF avtivates NF-kappa B by phosphatidyl-choline-specific phospholipase C-induced “acidic” sphingomyelin breakdown. Cell 71:765–776. doi:10.1016/0092-8674(92)90553-O

    Article  PubMed  CAS  Google Scholar 

  16. Zhang Y, Mattjus P, Schmid PC, Dong Z, Zhong S, Ma WY, Brown RE, Bode AM, Shmid HH, Dong Z (2001) Involvement of the acid sphingomyelinase pathway in uva-induced apoptosis. J Biol Chem 276:11775–11782. doi:10.1074/jbc.M006000200

    Article  PubMed  CAS  Google Scholar 

  17. Haimovitz-Friedman A, Kan CC, Ehleiter D, Persaud RS, McLoughlin M, Fuks Z, Kolesnick RN (1994) Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis. J Exp Med 180:525–535. doi:0022-1007/94/08/0525/11$2.00

    Article  PubMed  CAS  Google Scholar 

  18. Lacour S, Hammann A, Grazide S, Lagadic-Gossmann D, Athias A, Sergent O, Laurent G, Gambert P, Solary E, Dimanche-Boitrel MT (2004) Cisplatin-induced CD95 redistribution into membrane lipid rafts of HT29 human colon cancer cells. Cancer Res 64:3593–3598

    Article  PubMed  CAS  Google Scholar 

  19. Dumitru CA, Gulbins E (2006) TRAIL activates acid sphingomyelinase via a redox mechanism and releases ceramide to trigger apoptosis. Oncogene 25:5612–5625. doi:10.1038/sj.onc.1209568

    Article  PubMed  CAS  Google Scholar 

  20. Zhao QL, Kondo T, Noda A, Fujiwara Y (1999) Mitochondrial and intracellular free calcium regulation of radiation-induced apoptosis in human leukemic cells. Int J Radiat Biol 75:493–504

    Article  PubMed  CAS  Google Scholar 

  21. Kim DS, Park SS, Nam BH, Kim IH, Kim SY (2006) Reversal of drug resistance in breast cancer cells by transglutaminase 2 inhibition and nuclear factor-kappaB inactivation. Cancer Res 66:10936–10943. doi:10.1158/0008-5472.CAN-06-1521

    Article  PubMed  CAS  Google Scholar 

  22. Barnhart BC, Alappat EC, Peter ME (2003) The CD95 type I/type II model. Semin Immunol 5(3):185–193. doi:10.1016/S1044-5323(03)00031-9

    Article  Google Scholar 

  23. Wu XX, Jin XH, Zeng Y, El Hamed AM, Kakehi Y (2007) Low concentrations of doxorubicin sensitizes human solid cancer cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-receptor (R) 2-mediated apoptosis by inducing TRAIL-R2 expression. Cancer Sci Dec 98:1969–1976. doi:10.1111/j.1349-7006.2007.00632.x

    Article  CAS  Google Scholar 

  24. Delmas D, Rebe C, Micheau O, Athias A, Gambert P, Grazide S, Laurent G, Latruffe N, Solary E (2004) Redistribution of CD95, DR4, and DR5 in rafts accounts for the synergistic toxicity of resveratrol and death receptor ligands in colon carcinoma cells. Oncogene 23:8979–8986. doi:10.1038/sj.onc.1208086

    Article  PubMed  CAS  Google Scholar 

  25. Psahoulia FH, Drosopoulos KG, Doubravska L, Andera L, Pintzas A (2007) Quercetin enhances TRAIL-mediated apoptosis in colon cancer cells by inducing the accumulation of death receptors in lipid rafts. Mol Cancer Ther 6:2591. doi:10.1158/1535-7163.MCT-07-0001

    Article  PubMed  CAS  Google Scholar 

  26. Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39. doi:10.1038/35036052

    Article  PubMed  CAS  Google Scholar 

  27. Christian AE, Haynes MP, Phillips MC, Rothblat GH (1997) Use of cyclodextrins for manipulating cellular cholesterol content. J Lipid Res 38:2264–2272

    PubMed  CAS  Google Scholar 

  28. Shankar S, Chen X, Srivastava RK (2005) Effects of sequential treatments with chemotherapeutic drugs followed by TRAIL on prostate cancer in vitro and in vivo. Prostate 62:165–186. doi:10.1002/pros.20126

    Article  PubMed  CAS  Google Scholar 

  29. Kang J, Bu J, Hao Y, Chen F (2005) Subtoxic concentration of doxorubicin enhances TRAIL-induced apoptosis in human prostate cancer cell line LNCaP. Prostate Cancer Prostatic Dis 8:274–279. doi:10.1038/sj.pcan.4500798

    Article  PubMed  CAS  Google Scholar 

  30. Jin X, Wu XX, Abdel-Muneem Nouh MA, Kakehi Y (2007) Enhancement of death receptor 4 mediated apoptosis and cytotoxicity in renal cell carcinoma cells by subtoxic concentrations of doxorubicin. J Urol 177:1894–1899. doi:10.1016/j.juro.2007.01.018

    Article  PubMed  CAS  Google Scholar 

  31. Peter ME, Krammer PH (1998) Mechanisms of CD95 (APO-1/Fas)-mediated apoptosis. Curr Opin Immunol 10:545–551. doi:10.1016/S0952-7915(98)80222-7

    Article  PubMed  CAS  Google Scholar 

  32. Gajate C, Del Canto-Jañez E, Acuña AU, Amat-Guerri F, Geijo E, Santos-Beneit AM, Veldman RJ, Mollinedo F (2004) Intracellular triggering of Fas aggregation and recruitment of apoptotic molecules into Fas-enriched rafts in selective tumor cell apoptosis. J Exp Med 200:353–365. doi:10.1084/jem.20040213

    Article  PubMed  CAS  Google Scholar 

  33. Delmas D, Rébé C, Lacour S, Filomenko R, Athias A, Gambert P, Cherkaoui-Malki M, Jannin B, Dubrez-Daloz L, Latruffe N, Solary E (2003) Resveratrol-induced apoptosis is associated with Fas redistribution in the rafts and the formation of a death-inducing signaling complex in colon cancer cells. J Biol Chem 278:41482–41490. doi:10.1074/jbc.M304896200

    Article  PubMed  CAS  Google Scholar 

  34. Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, Clark L, Bayani N, Coppe JP, Tong F, Speed T, Spellman PT, DeVries S, Lapuk A, Wang NJ, Kuo WL, Stilwell JL, Pinkel D, Albertson DG, Waldman FM, McCormick F, Dickson RB, Johnson MD, Lippman M, Ethier S, Gazdar A, Gray JW (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10:515–527. doi:10.1016/j.ccr.2006.10.008

    Article  PubMed  CAS  Google Scholar 

  35. Sikora J, Dworacki G, Zeromski J (1998) Expression of Fas and Fas ligand and apoptosis in tumor-associated lymphocytes and in tumor cells from malignant pleural effusions. Nat Immun 16:244–255. doi:10.1159/000069450

    Article  PubMed  CAS  Google Scholar 

  36. Muppidi JR, Tschopp J, Siegel RM (2004) Life and death decisions: secondary complexes and lipid rafts in TNF receptor family signal transduction. Immunity 21:461–465. doi:10.1016/j.immuni.2004.10.001

    Article  PubMed  CAS  Google Scholar 

  37. Song JH, Tse MCL, Bellail A, Phuphanich S, Khuri F, Kneteman NM, Hao C (2007) Lipid rafts and nonrafts mediate tumor necrosis factor–related apoptosis-inducing ligand–induced apoptotic and nonapoptotic signals in non–small cell Lung Carcinoma Cells. Cancer Res 67:6946. doi:10.1158/0008-5472.CAN-06-3896

    Article  PubMed  CAS  Google Scholar 

  38. Grassmé H, Cremesti A, Kolesnick R, Gulbins E (2003) Ceramide-mediated clustering is required for CD95-DISC formation. Oncogene 22:5457–5470. doi:10.1038/sj.onc.1206540

    Article  PubMed  Google Scholar 

  39. Dimanche-Boitrel MT, Meurette O, Rebillard A, Lacour S (2005) Role of early plasma membrane events in chemotherapy-induced. Cell death Drug Resist Updat 8:5–14. doi:10.1016/j.drup.2005.02.003

    Article  CAS  Google Scholar 

  40. Martin S, Phillips DC, Szekely-Szucs K, Elghazi L, Desmots F, Houghton JA (2005) Cyclooxygenase-2 inhibition sensitizes human colon carcinoma cells to TRAIL-induced apoptosis through clustering of DR5 and concentrating death-inducing signaling complex components into ceramide-enriched caveolae. Cancer Res 65:11447–11458

    Article  PubMed  CAS  Google Scholar 

  41. Moulin M, Carpentier S, Levade T, Arrigo AP (2007) Potential roles of membrane fluidity and ceramide in hyperthermia and alcohol stimulation of TRAIL apoptosis. Apoptosis 12:1703–1720

    Article  PubMed  CAS  Google Scholar 

  42. Johnstone RW, Frew AJ, Smyth MJ (2008) The TRAIL apoptotic pathway in cancer onset, progression and therapy. Nat Rev Cancer 8:782–798. doi:10.1038/nrc2465

    Article  PubMed  CAS  Google Scholar 

  43. Hallett WHD, Ames E, Motarjemi M, Barao I, Shanker A, Tamang DL, Sayers TJ, Hudig D, Murphy WJ (2008) Sensitization of tumor cells to NK cell-mediated killing by proteasome inhibition. J Immunol 180:163–170

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Eric Gulbins (Department of Molecular Biology, University of Duisburg-Essen, Germany) for kindly providing anti-ceramide antibody and Dr. Olivier Micheau (INSERM, U866, France) for kindly providing soluble TRAIL-R1-Fc and TRAIL-R2-Fc. SA acknowledges the support of the Ministère de l’enseignement supérieur, de la recherche scientifique et de la technologie (Tunisia) for financial support and the University of Monastir.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abderraouf Kenani.

Additional information

Jacqueline Bréard and Abderraouf Kenani are senior Authors and contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aroui, S., Brahim, S., Hamelin, J. et al. Conjugation of doxorubicin to cell penetrating peptides sensitizes human breast MDA-MB 231 cancer cells to endogenous TRAIL-induced apoptosis. Apoptosis 14, 1352–1365 (2009). https://doi.org/10.1007/s10495-009-0397-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-009-0397-8

Keywords

Navigation