Skip to main content
Log in

Regulation of Drosophila melanogaster pro-apoptotic gene hid

  • Apoptosis in Drosophila
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Key decisions one makes in a lifetime include whether and how often to reproduce, what role to play in the community and, under certain conditions, whether to live or die. Similar decisions are also made at the level of cells: whether to divide, what fate to assume in the multicellular context of metazoan development and, under certain conditions, whether to live or to die. The pro-apoptotic gene hid plays an important role in the execution of cell death in Drosophila. Here, we review the various levels of control that exist to regulate Hid according to the life-or-death choice of a cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bergmann A, Yang AY, Srivastava M (2003) Regulators of IAP function: coming to grips with the grim reaper. Curr Opin Cell Biol 15:717–724

    Article  PubMed  CAS  Google Scholar 

  2. Hay BA, Guo M (2006) Caspase-dependent cell death in Drosophila. Annu Rev Cell Dev Biol 22:623–650

    Article  PubMed  CAS  Google Scholar 

  3. Steller H (2008) Regulation of apoptosis in Drosophila. Cell Death Differ 15:1132–1138

    Article  PubMed  CAS  Google Scholar 

  4. Claveria C, Caminero E, Martinez AC, Campuzano S, Torres M (2002) GH3, a novel proapoptotic domain in Drosophila grim, promotes a mitochondrial death pathway. EMBO J 21:3327–3336

    Article  PubMed  CAS  Google Scholar 

  5. Wing JP, Schwartz LM, Nambu JR (2001) The RHG motifs of Drosophila reaper and grim are important for their distinct cell death-inducing abilities. Mech Dev 102:193–203

    Article  PubMed  CAS  Google Scholar 

  6. Zhou L (2005) The ‘unique key’ feature of the Iap-binding motifs in RHG proteins. Cell Death Differ 12:1148–1151

    Article  PubMed  CAS  Google Scholar 

  7. Freel CD, Richardson DA, Thomenius MJ et al (2008) Mitochondrial localization of reaper to promote inhibitors of apoptosis protein degradation conferred by GH3 domain-lipid interactions. J Biol Chem 283:367–379

    Article  PubMed  CAS  Google Scholar 

  8. Olson MR, Holley CL, Gan EC, Colon-Ramos DA, Kaplan B, Kornbluth S (2003) A GH3-like domain in reaper is required for mitochondrial localization and induction of IAP degradation. J Biol Chem 278:44758–44768

    Article  PubMed  CAS  Google Scholar 

  9. Abdelwahid E, Yokokura T, Krieser RJ, Balasundaram S, Fowle WH, White K (2007) Mitochondrial disruption in Drosophila apoptosis. Dev Cell 12:793–806

    Article  PubMed  CAS  Google Scholar 

  10. White K, Grether ME, Abrams JM, Young L, Farrell K, Steller H (1994) Genetic control of programmed cell death in Drosophila. Science 264:677–683

    Article  PubMed  CAS  Google Scholar 

  11. Grether ME, Abrams JM, Agapite J, White K, Steller H (1995) The head involution defective gene of Drosophila melanogaster functions in programmed cell death. Genes Dev 9:1694–1708

    Article  PubMed  CAS  Google Scholar 

  12. Sen A, Kuruvilla D, Pinto L, Sarin A, Rodrigues V (2004) Programmed cell death and context dependent activation of the EGF pathway regulate gliogenesis in the Drosophila olfactory system. Mech Dev 121:65–78

    Article  PubMed  CAS  Google Scholar 

  13. Miller DT, Cagan RL (1998) Local induction of patterning and programmed cell death in the developing Drosophila retina. Development 125:2327–2335

    PubMed  CAS  Google Scholar 

  14. Sawamoto K, Taguchi A, Hirota Y, Yamada C, Jin M, Okano H (1998) Argos induces programmed cell death in the developing Drosophila eye by inhibition of the Ras pathway. Cell Death Differ 5:548

    Article  PubMed  Google Scholar 

  15. Baker NE, Yu SY (2001) The EGF receptor defines domains of cell cycle progression and survival to regulate cell number in the developing Drosophila eye. Cell 104:699–708

    Article  PubMed  CAS  Google Scholar 

  16. Yu SY, Yoo SJ, Yang L et al (2002) A pathway of signals regulating effector and initiator caspases in the developing Drosophila eye. Development 129:3269–3278

    PubMed  CAS  Google Scholar 

  17. Bergmann A, Tugentman M, Shilo BZ, Steller H (2002) Regulation of cell number by MAPK-dependent control of apoptosis: a mechanism for trophic survival signaling. Dev Cell 2:159–170

    Article  PubMed  CAS  Google Scholar 

  18. Kurada P, White K (1998) Ras promotes cell survival in Drosophila by downregulating hid expression. Cell 95:319–329

    Article  PubMed  CAS  Google Scholar 

  19. Bergmann A, Agapite J, McCall K, Steller H (1998) The Drosophila gene hid is a direct molecular target of Ras-dependent survival signaling. Cell 95:331–341

    Article  PubMed  CAS  Google Scholar 

  20. Luo X, Puig O, Hyun J, Bohmann D, Jasper H (2007) Foxo and Fos regulate the decision between cell death and survival in response to UV irradiation. EMBO J 26:380–390

    Article  PubMed  CAS  Google Scholar 

  21. Udan RS, Kango-Singh M, Nolo R, Tao C, Halder G (2003) Hippo promotes proliferation arrest and apoptosis in the Salvador/Warts pathway. Nat Cell Biol 5:914–920

    Article  PubMed  CAS  Google Scholar 

  22. Thompson BJ, Cohen SM (2006) The Hippo pathway regulates the bantam microRNA to control cell proliferation and apoptosis in Drosophila. Cell 126:767–774

    Article  PubMed  CAS  Google Scholar 

  23. Nolo R, Morrison CM, Tao C, Zhang X, Halder G (2006) The bantam microRNA is a target of the hippo tumor-suppressor pathway. Curr Biol 16:1895–1904

    Article  PubMed  CAS  Google Scholar 

  24. de la Cova C, Abril M, Bellosta P, Gallant P, Johnston LA (2004) Drosophila myc regulates organ size by inducing cell competition. Cell 117:107–116

    Article  PubMed  Google Scholar 

  25. Dimova DK, Dyson NJ (2005) The E2F transcriptional network: old acquaintances with new faces. Oncogene 24:2810–2826

    Article  PubMed  CAS  Google Scholar 

  26. DeGregori J, Johnson DG (2006) Distinct and overlapping roles for E2F family members in transcription, proliferation and apoptosis. Curr Mol Med 6:739–748

    PubMed  CAS  Google Scholar 

  27. Moon NS, Frolov MV, Kwon EJ et al (2005) Drosophila E2F1 has context-specific pro- and antiapoptotic properties during development. Dev Cell 9:463–475

    Article  PubMed  CAS  Google Scholar 

  28. Moon NS, Di Stefano L, Morris EJ, Patel R, White K, Dyson NJ (2008) E2F and p53 induce apoptosis independently during Drosophila development but intersect in the context of DNA damage. PLoS Genet 4:e1000153

    Article  PubMed  Google Scholar 

  29. Tanaka-Matakatsu M, Xu J, Cheng L, Du W (2009) Regulation of apoptosis of rbf mutant cells during Drosophila development. Dev Biol 326:347–356

    Article  PubMed  CAS  Google Scholar 

  30. Du W, Vidal M, Xie JE, Dyson N (1996) RBF, a novel RB-related gene that regulates E2F activity and interacts with cyclin E in Drosophila. Genes Dev 10:1206–1218

    Article  PubMed  CAS  Google Scholar 

  31. Stevaux O, Dimova D, Frolov MV, Taylor-Harding B, Morris E, Dyson N (2002) Distinct mechanisms of E2F regulation by Drosophila RBF1 and RBF2. EMBO J 21:4927–4937

    Article  PubMed  CAS  Google Scholar 

  32. Sato K, Hayashi Y, Ninomiya Y et al (2007) Maternal Nanos represses hid/skl-dependent apoptosis to maintain the germ line in Drosophila embryos. Proc Natl Acad Sci USA 104:7455–7460

    Article  PubMed  CAS  Google Scholar 

  33. Leaman D, Chen PY, Fak J et al (2005) Antisense-mediated depletion reveals essential and specific functions of microRNAs in Drosophila development. Cell 121:1097–1108

    Article  PubMed  CAS  Google Scholar 

  34. Hipfner DR, Weigmann K, Cohen SM (2002) The bantam gene regulates Drosophila growth. Genetics 161:1527–1537

    PubMed  CAS  Google Scholar 

  35. Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM (2003) Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113:25–36

    Article  PubMed  CAS  Google Scholar 

  36. Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655

    Article  PubMed  CAS  Google Scholar 

  37. Vazquez-Pianzola P, Hernandez G, Suter B, Rivera-Pomar R (2007) Different modes of translation for hid, grim and sickle mRNAs in Drosophila. Cell Death Differ 14:286–295

    Article  PubMed  CAS  Google Scholar 

  38. Haining WN, Carboy-Newcomb C, Wei CL, Steller H (1999) The proapoptotic function of Drosophila Hid is conserved in mammalian cells. Proc Natl Acad Sci USA 96:4936–4941

    Article  PubMed  CAS  Google Scholar 

  39. Jiang C, Lamblin AF, Steller H, Thummel CS (2000) A steroid-triggered transcriptional hierarchy controls salivary gland cell death during Drosophila metamorphosis. Mol Cell 5:445–455

    Article  PubMed  CAS  Google Scholar 

  40. Brodsky MH, Weinert BT, Tsang G et al (2004) Drosophila melanogaster MNK/Chk2 and p53 regulate multiple DNA repair and apoptotic pathways following DNA damage. Mol Cell Biol 24:1219–1231

    Article  PubMed  CAS  Google Scholar 

  41. Wichmann A, Jaklevic B, Su TT (2006) Ionizing radiation induces caspase-dependent but Chk2- and p53-independent cell death in Drosophila melanogaster. Proc Natl Acad Sci USA 103:9952–9957

    Article  PubMed  CAS  Google Scholar 

  42. Brodsky MH, Nordstrom W, Tsang G, Kwan E, Rubin GM, Abrams JM (2000) Drosophila p53 binds a damage response element at the reaper locus. Cell 101:103–113

    Article  PubMed  CAS  Google Scholar 

  43. Zhang Y, Lin N, Carroll PM et al (2008) Epigenetic blocking of an enhancer region controls irradiation-induced proapoptotic gene expression in Drosophila embryos. Dev Cell 14:481–493

    Article  PubMed  CAS  Google Scholar 

  44. Zhu CC, Bornemann DJ, Zhitomirsky D, Miller EL, O’Connor MB, Simon JA (2008) Drosophila histone deacetylase-3 controls imaginal disc size through suppression of apoptosis. PLoS Genet 4:e1000009

    Article  PubMed  Google Scholar 

  45. Wells BS, Yoshida E, Johnston LA (2006) Compensatory proliferation in Drosophila imaginal discs requires Dronc-dependent p53 activity. Curr Biol 16:1606–1615

    Article  PubMed  CAS  Google Scholar 

  46. Jassim OW, Fink JL, Cagan RL (2003) Dmp53 protects the Drosophila retina during a developmentally regulated DNA damage response. EMBO J 22:5622–5632

    Article  PubMed  CAS  Google Scholar 

  47. Jaklevic B, Uyetake L, Wichmann A, Bilak A, English CN, Su TT (2008) Modulation of ionizing radiation-induced apoptosis by bantam microRNA in Drosophila. Dev Biol 320:122–130

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tin Tin Su.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bilak, A., Su, T.T. Regulation of Drosophila melanogaster pro-apoptotic gene hid . Apoptosis 14, 943–949 (2009). https://doi.org/10.1007/s10495-009-0374-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-009-0374-2

Keywords

Navigation