Skip to main content
Log in

Inside an enigma: do mitochondria contribute to cell death in Drosophila?

  • Apoptosis in Drosophila
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Mitochondria have been shown to play an important role in cell death in mammalian cells. However, the importance of mitochondria in Drosophila apoptosis is still under investigation. Many proteins involved in the regulation of apoptosis in mammals act at mitochondria or are released from mitochondria, resulting in caspase activation. In addition, these organelles undergo significant ultrastructural changes during apoptosis. This review highlights similarities and differences in the roles of mitochondria and mitochondrial factors in apoptosis between Drosophila and mammals. In Drosophila, many key regulators of apoptosis also appear to localize to this organelle, which also undergoes ultrastructural changes during apoptosis. Although many of the proteins important for the control of apoptosis in mammalian cells are conserved in Drosophila, the role that mitochondria play in apoptosis in this model system remains an area of controversy and active research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kornbluth S, White K (2005) Apoptosis in Drosophila: neither fish nor fowl (nor man, nor worm). J Cell Sci 118:1779–1787. doi:10.1242/jcs.02377

    Article  PubMed  CAS  Google Scholar 

  2. Hay BA, Guo M (2006) Caspase-dependent cell death in Drosophila. Annu Rev Cell Dev Biol 22:623–650. doi:10.1146/annurev.cellbio.21.012804.093845

    Article  PubMed  CAS  Google Scholar 

  3. Xu D, Li Y, Arcaro M, Lackey M, Bergmann A (2005) The CARD-carrying caspase Dronc is essential for most, but not all, developmental cell death in Drosophila. Development 132:2125–2134. doi:10.1242/dev.01790

    Article  PubMed  CAS  Google Scholar 

  4. Kanuka H, Sawamoto K, Inohara N, Matsuno K, Okano H, Miura M (1999) Control of the cell death pathway by Dapaf-1, a Drosophila Apaf-1/CED-4-related caspase activator. Mol Cell 4:757–769. doi:10.1016/S1097-2765(00)80386-X

    Article  PubMed  CAS  Google Scholar 

  5. Rodriguez A, Oliver H, Zou H, Chen P, Wang X, Abrams J (1999) DARK, a Drosophila homolog of Apaf-1/ced-4, functions in an evolutionarily conserved death pathway. Nat Cell Biol 1:272–279. doi:10.1038/12984

    Article  PubMed  CAS  Google Scholar 

  6. Zhou L, Song Z, Tittel J, Steller H (1999) HAC-1, a Drosophila homolog of APAF-1 and CED-4, functions in developmental and radiation-induced apoptosis. Mol Cell 4:745–755. doi:10.1016/S1097-2765(00)80385-8

    Article  PubMed  CAS  Google Scholar 

  7. Muro I, Berry DL, Huh JR, Chen CH, Huang H, Yoo SJ, Guo M, Baehrecke EH, Hay BA (2006) The Drosophila caspase Ice is important for many apoptotic cell deaths and for spermatid individualization, a nonapoptotic process. Development 133:3305–3315. doi:10.1242/dev.02495

    Article  PubMed  CAS  Google Scholar 

  8. O’Riordan MX, Bauler LD, Scott FL, Duckett CS (2008) Inhibitor of apoptosis proteins in eukaryotic evolution and development: a model of thematic conservation. Dev Cell 15:497–508. doi:10.1016/j.devcel.2008.09.012

    Article  PubMed  Google Scholar 

  9. Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116:205–219. doi:10.1016/S0092-8674(04)00046-7

    Article  PubMed  CAS  Google Scholar 

  10. Bao Q, Shi Y (2007) Apoptosome: a platform for the activation of initiator caspases. Cell Death Differ 14:56–65. doi:10.1038/sj.cdd.4402028

    Article  PubMed  CAS  Google Scholar 

  11. Martinou JC, Youle RJ (2006) Which came first, the cytochrome c release or the mitochondrial fission? Cell Death Differ 13:1291–1295. doi:10.1038/sj.cdd.4401985

    Article  PubMed  CAS  Google Scholar 

  12. Abdelwahid E, Yokokura T, Krieser RJ, Balasundaram S, Fowle WH, White K (2007) Mitochondrial disruption in Drosophila apoptosis. Dev Cell 12:793–806. doi:10.1016/j.devcel.2007.04.004

    Article  PubMed  CAS  Google Scholar 

  13. Goyal G, Fell B, Sarin A, Youle RJ, Sriram V (2007) Role of mitochondrial remodeling in programmed cell death in Drosophila melanogaster. Dev Cell 12:807–816. doi:10.1016/j.devcel.2007.02.002

    Article  PubMed  CAS  Google Scholar 

  14. Means JC, Hays R (2007) Mitochondrial membrane depolarization in Drosophila apoptosis. Cell Death Differ 14:383–385. doi:10.1038/sj.cdd.4402036

    Article  PubMed  CAS  Google Scholar 

  15. Chipuk JE, Bouchier-Hayes L, Green DR (2006) Mitochondrial outer membrane permeabilization during apoptosis: the innocent bystander scenario. Cell Death Differ 13:1396–1402. doi:10.1038/sj.cdd.4401963

    Article  PubMed  CAS  Google Scholar 

  16. Lakhani SA, Masud A, Kuida K, Porter GA Jr, Booth CJ, Mehal WZ, Inayat I, Flavell RA (2006) Caspases 3 and 7: key mediators of mitochondrial events of apoptosis. Science 311:847–851. doi:10.1126/science.1115035

    Article  PubMed  CAS  Google Scholar 

  17. Sun MG, Williams J, Munoz-Pinedo C, Perkins GA, Brown JM, Ellisman MH, Green DR, Frey TG (2007) Correlated three-dimensional light and electron microscopy reveals transformation of mitochondria during apoptosis. Nat Cell Biol 9:1057–1065. doi:10.1038/ncb1630

    Article  PubMed  CAS  Google Scholar 

  18. Arama E, Bader M, Srivastava M, Bergmann A, Steller H (2006) The two Drosophila cytochrome C proteins can function in both respiration and caspase activation. EMBO J 25:232–243. doi:10.1038/sj.emboj.7600920

    Article  PubMed  CAS  Google Scholar 

  19. Walker DW, Benzer S (2004) Mitochondrial “swirls” induced by oxygen stress and in the Drosophila mutant hyperswirl. Proc Natl Acad Sci USA 101:10290–10295. doi:10.1073/pnas.0403767101

    Article  PubMed  CAS  Google Scholar 

  20. Chan DC (2006) Mitochondria: dynamic organelles in disease, aging, and development. Cell 125:1241–1252. doi:10.1016/j.cell.2006.06.010

    Article  PubMed  CAS  Google Scholar 

  21. Hales KG, Fuller MT (1997) Developmentally regulated mitochondrial fusion mediated by a conserved, novel, predicted GTPase. Cell 90:121–129. doi:10.1016/S0092-8674(00)80319-0

    Article  PubMed  CAS  Google Scholar 

  22. Hwa JJ, Hiller MA, Fuller MT, Santel A (2002) Differential expression of the Drosophila mitofusin genes fuzzy onions (fzo) and dmfn. Mech Dev 116:213–216. doi:10.1016/S0925-4773(02)00141-7

    Article  PubMed  CAS  Google Scholar 

  23. Frank S, Gaume B, Bergmann-Leitner ES, Leitner WW, Robert EG, Catez F, Smith CL, Youle RJ (2001) The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell 1:515–525. doi:10.1016/S1534-5807(01)00055-7

    Article  PubMed  CAS  Google Scholar 

  24. Jagasia R, Grote P, Westermann B, Conradt B (2005) DRP-1-mediated mitochondrial fragmentation during EGL-1-induced cell death in C. elegans. Nature 433:754–760. doi:10.1038/nature03316

    Article  PubMed  CAS  Google Scholar 

  25. Galindo KA, Lu WJ, Park JH, Abrams JM (2009) The Bax/Bak ortholog in Drosophila, Debcl, exerts limited control over programmed cell death. Development 136:275–283. doi:10.1242/dev.019042

    Article  PubMed  CAS  Google Scholar 

  26. Breckenridge DG, Kang BH, Kokel D, Mitani S, Staehelin LA, Xue D (2008) Caenorhabditis elegans drp-1 and fis-2 regulate distinct cell-death execution pathways downstream of ced-3 and independent of ced-9. Mol Cell 31:586–597. doi:10.1016/j.molcel.2008.07.015

    Article  PubMed  CAS  Google Scholar 

  27. Cassidy-Stone A, Chipuk JE, Ingerman E, Song C, Yoo C, Kuwana T, Kurth MJ, Shaw JT, Hinshaw JE, Green DR, Nunnari J (2008) Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization. Dev Cell 14:193–204. doi:10.1016/j.devcel.2007.11.019

    Article  PubMed  CAS  Google Scholar 

  28. Estaquier J, Arnoult D (2007) Inhibiting Drp1-mediated mitochondrial fission selectively prevents the release of cytochrome c during apoptosis. Cell Death Differ 14:1086–1094. doi:10.1038/sj.cdd.4402107

    Article  PubMed  CAS  Google Scholar 

  29. Sheridan C, Delivani P, Cullen SP, Martin SJ (2008) Bax- or Bak-induced mitochondrial fission can be uncoupled from cytochrome C release. Mol Cell 31:570–585. doi:10.1016/j.molcel.2008.08.002

    Article  PubMed  CAS  Google Scholar 

  30. Karbowski M, Lee YJ, Gaume B, Jeong SY, Frank S, Nechushtan A, Santel A, Fuller M, Smith CL, Youle RJ (2002) Spatial and temporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis. J Cell Biol 159:931–938. doi:10.1083/jcb.200209124

    Article  PubMed  CAS  Google Scholar 

  31. Karbowski M, Norris KL, Cleland MM, Jeong SY, Youle RJ (2006) Role of Bax and Bak in mitochondrial morphogenesis. Nature 443:658–662. doi:10.1038/nature05111

    Article  PubMed  CAS  Google Scholar 

  32. Doumanis J, Dorstyn L, Kumar S (2007) Molecular determinants of the subcellular localization of the Drosophila Bcl-2 homologues DEBCL and BUFFY. Cell Death Differ 14:907–915

    PubMed  CAS  Google Scholar 

  33. Brachmann CB, Jassim OW, Wachsmuth BD, Cagan RL (2000) The Drosophila bcl-2 family member dBorg-1 functions in the apoptotic response to UV-irradiation. Curr Biol 10:547–550. doi:10.1016/S0960-9822(00)00474-7

    Article  PubMed  CAS  Google Scholar 

  34. Colussi PA, Quinn LM, Huang DC, Coombe M, Read SH, Richardson H, Kumar S (2000) Debcl, a proapoptotic Bcl-2 homologue, is a component of the Drosophila melanogaster cell death machinery. J Cell Biol 148:703–714. doi:10.1083/jcb.148.4.703

    Article  PubMed  CAS  Google Scholar 

  35. Igaki T, Kanuka H, Inohara N, Sawamoto K, Nunez G, Okano H, Miura M (2000) Drob-1, a Drosophila member of the Bcl-2/CED-9 family that promotes cell death. Proc Natl Acad Sci USA 97:662–667. doi:10.1073/pnas.97.2.662

    Article  PubMed  CAS  Google Scholar 

  36. Zhang H, Huang Q, Ke N, Matsuyama S, Hammock B, Godzik A, Reed JC (2000) Drosophila pro-apoptotic Bcl-2/Bax homologue reveals evolutionary conservation of cell death mechanisms. J Biol Chem 275:27303–27306

    PubMed  CAS  Google Scholar 

  37. Quinn L, Coombe M, Mills K, Daish T, Colussi P, Kumar S, Richardson H (2003) Buffy, a Drosophila Bcl-2 protein, has anti-apoptotic and cell cycle inhibitory functions. EMBO J 22:3568–3579. doi:10.1093/emboj/cdg355

    Article  PubMed  CAS  Google Scholar 

  38. Park J, Lee SB, Lee S, Kim Y, Song S, Kim S, Bae E, Kim J, Shong M, Kim JM, Chung J (2006) Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441:1157–1161. doi:10.1038/nature04788

    Article  PubMed  CAS  Google Scholar 

  39. Senoo-Matsuda N, Igaki T, Miura M (2005) Bax-like protein Drob-1 protects neurons from expanded polyglutamine-induced toxicity in Drosophila. EMBO J 24:2700–2713. doi:10.1038/sj.emboj.7600721

    Article  PubMed  CAS  Google Scholar 

  40. Sevrioukov EA, Burr J, Huang EW, Assi HH, Monserrate JP, Purves DC, Wu JN, Song EJ, Brachmann CB (2007) Drosophila Bcl-2 proteins participate in stress-induced apoptosis, but are not required for normal development. Genesis 45:184–193. doi:10.1002/dvg.20279

    Article  PubMed  CAS  Google Scholar 

  41. Desagher S, Martinou JC (2000) Mitochondria as the central control point of apoptosis. Trends Cell Biol 10:369–377. doi:10.1016/S0962-8924(00)01803-1

    Article  PubMed  CAS  Google Scholar 

  42. Varkey J, Chen P, Jemmerson R, Abrams JM (1999) Altered cytochrome C display precedes apoptotic cell death in Drosophila. J Cell Biol 144:701–710. doi:10.1083/jcb.144.4.701

    Article  PubMed  CAS  Google Scholar 

  43. Means JC, Muro I, Clem RJ (2006) Lack of involvement of mitochondrial factors in caspase activation in a Drosophila cell-free system. Cell Death Differ 13:1222–1234. doi:10.1038/sj.cdd.4401821

    Article  PubMed  CAS  Google Scholar 

  44. Claveria C, Caminero E, Martinez AC, Campuzano S, Torres M (2002) GH3, a novel proapoptotic domain in Drosophila Grim, promotes a mitochondrial death pathway. EMBO J 21:3327–3336. doi:10.1093/emboj/cdf354

    Article  PubMed  CAS  Google Scholar 

  45. Olson MR, Holley CL, Gan EC, Colon-Ramos DA, Kaplan B, Kornbluth SA (2003) GH3-like domain in reaper is required for mitochondrial localization and induction of IAP degradation. J Biol Chem 278:44758–44768. doi:10.1074/jbc.M308055200

    Article  PubMed  CAS  Google Scholar 

  46. Dorstyn L, Read S, Cakouros D, Huh JR, Hay BA, Kumar S (2002) The role of cytochrome c in caspase activation in Drosophila melanogaster cells. J Cell Biol 156:1089–1098. doi:10.1083/jcb.200111107

    Article  PubMed  CAS  Google Scholar 

  47. Zimmermann KC, Ricci JE, Droin NM, Green DR (2002) The role of ARK in stress-induced apoptosis in Drosophila cells. J Cell Biol 156:1077–1087. doi:10.1083/jcb.20112068

    Article  PubMed  CAS  Google Scholar 

  48. Challa M, Malladi S, Pellock BJ, Dresnek D, Varadarajan S, Yin YW, White K, Bratton SB (2007) Drosophila Omi, a mitochondrial-localized IAP antagonist and proapoptotic serine protease. EMBO J 26:3144–3156. doi:10.1038/sj.emboj.7601745

    Article  PubMed  CAS  Google Scholar 

  49. Arama E, Agapite J, Steller H (2003) Caspase activity and a specific cytochrome C are required for sperm differentiation in Drosophila. Dev Cell 4:687–697. doi:10.1016/S1534-5807(03)00120-5

    Article  PubMed  CAS  Google Scholar 

  50. Huh JR, Vernooy SY, Yu H, Yan N, Shi Y, Guo M, Hay BA (2004) Multiple apoptotic caspase cascades are required in nonapoptotic roles for Drosophila spermatid individualization. PLoS Biol 2:E15. doi:10.1371/journal.pbio.0020015

    Article  PubMed  Google Scholar 

  51. Mendes CS, Arama E, Brown S, Scherr H, Srivastava M, Bergmann A, Steller H, Mollereau B (2006) Cytochrome c-d regulates developmental apoptosis in the Drosophila retina. EMBO Rep 7:933–939. doi:10.1038/sj.embor.7400773

    Article  PubMed  CAS  Google Scholar 

  52. Yu X, Wang L, Acehan D, Wang X, Akey CW (2006) Three-dimensional structure of a double apoptosome formed by the Drosophila Apaf-1 related killer. J Mol Biol 355:577–589. doi:10.1016/j.jmb.2005.10.040

    Article  PubMed  CAS  Google Scholar 

  53. Dorstyn L, Mills K, Lazebnik Y, Kumar S (2004) The two cytochrome c species, DC3 and DC4, are not required for caspase activation and apoptosis in Drosophila cells. J Cell Biol 167:405–410. doi:10.1083/jcb.200408054

    Article  PubMed  CAS  Google Scholar 

  54. Oberst A, Bender C, Green DR (2008) Living with death: the evolution of the mitochondrial pathway of apoptosis in animals. Cell Death Differ 15:1139–1146. doi:10.1038/cdd.2008.65

    Article  PubMed  CAS  Google Scholar 

  55. Gottfried Y, Rotem A, Lotan R, Steller H, Larisch S (2004) The mitochondrial ARTS protein promotes apoptosis through targeting XIAP. EMBO J 23:1627–1635. doi:10.1038/sj.emboj.7600155

    Article  PubMed  CAS  Google Scholar 

  56. Hegde R, Srinivasula SM, Zhang Z, Wassell R, Mukattash R, Cilenti L, DuBois G, Lazebnik Y, Zervos AS, Fernandes-Alnemri T, Alnemri ES (2002) Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein-caspase interaction. J Biol Chem 277:432–438. doi:10.1074/jbc.M109721200

    Article  PubMed  CAS  Google Scholar 

  57. Martins LM, Iaccarino I, Tenev T, Gschmeissner S, Totty NF, Lemoine NR, Savopoulos J, Gray CW, Creasy CL, Dingwall C, Downward J (2002) The serine protease Omi/HtrA2 regulates apoptosis by binding XIAP through a reaper-like motif. J Biol Chem 277:439–444. doi:10.1074/jbc.M109784200

    Article  PubMed  CAS  Google Scholar 

  58. Suzuki Y, Imai Y, Nakayama H, Takahashi K, Takio K, Takahashi R (2001) A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol Cell 8:613–621. doi:10.1016/S1097-2765(01)00341-0

    Article  PubMed  CAS  Google Scholar 

  59. Igaki T, Suzuki Y, Tokushige N, Aonuma H, Takahashi R, Miura M (2007) Evolution of mitochondrial cell death pathway: proapoptotic role of HtrA2/Omi in Drosophila. Biochem Biophys Res Commun 356:993–997. doi:10.1016/j.bbrc.2007.03.079

    Article  PubMed  CAS  Google Scholar 

  60. Khan FS, Fujioka M, Datta P, Fernandes-Alnemri T, Jaynes JB, Alnemri ES (2008) The interaction of DIAP1 with dOmi/HtrA2 regulates cell death in Drosophila. Cell Death Differ 15:1073–1083. doi:10.1038/cdd.2008.19

    Article  PubMed  CAS  Google Scholar 

  61. Alnemri ES (2007) HtrA2 and Parkinson’s disease: think PINK? Nat Cell Biol 9:1227–1229. doi:10.1038/ncb1107-1227

    Article  PubMed  CAS  Google Scholar 

  62. Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM, Kroemer G (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441–446. doi:10.1038/17135

    Article  PubMed  CAS  Google Scholar 

  63. Klein JA, Longo-Guess CM, Rossmann MP, Seburn KL, Hurd RE, Frankel WN, Bronson RT, Ackerman SL (2002) The harlequin mouse mutation downregulates apoptosis-inducing factor. Nature 419:367–374. doi:10.1038/nature01034

    Article  PubMed  CAS  Google Scholar 

  64. Joza N, Galindo K, Pospisilik JA, Benit P, Rangachari M, Kanitz EE, Nakashima Y, Neely GG, Rustin P, Abrams JM, Kroemer G, Penninger JM (2008) The molecular archaeology of a mitochondrial death effector: AIF in Drosophila. Cell Death Differ 15:1009–1018. doi:10.1038/cdd.2008.24

    Article  PubMed  CAS  Google Scholar 

  65. Clark IE, Dodson MW, Jiang C, Cao JH, Huh JR, Seol JH, Yoo SJ, Hay BA, Guo M (2006) Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441:1162–1166. doi:10.1038/nature04779

    Article  PubMed  CAS  Google Scholar 

  66. Yang Y, Gehrke S, Imai Y, Huang Z, Ouyang Y, Wang JW, Yang L, Beal MF, Vogel H, Lu B (2006) Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proc Natl Acad Sci USA 103:10793–10798. doi:10.1073/pnas.0602493103

    Article  PubMed  CAS  Google Scholar 

  67. Deng H, Dodson MW, Huang H, Guo M (2008) The Parkinson’s disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila. Proc Natl Acad Sci USA 105:14503–14508. doi:10.1073/pnas.0803998105

    Article  PubMed  CAS  Google Scholar 

  68. Poole AC, Thomas RE, Andrews LA, McBride HM, Whitworth AJ, Pallanck LJ (2008) The PINK1/Parkin pathway regulates mitochondrial morphology. Proc Natl Acad Sci USA 105:1638–1643. doi:10.1073/pnas.0709336105

    Article  PubMed  CAS  Google Scholar 

  69. Yang Y, Ouyang Y, Yang L, Beal MF, McQuibban A, Vogel H, Lu B (2008) Pink1 regulates mitochondrial dynamics through interaction with the fission/fusion machinery. Proc Natl Acad Sci USA 105:7070–7075. doi:10.1073/pnas.0711845105

    Article  PubMed  CAS  Google Scholar 

  70. Verstreken P, Ly CV, Venken KJ, Koh TW, Zhou Y, Bellen HJ (2005) Synaptic mitochondria are critical for mobilization of reserve pool vesicles at Drosophila neuromuscular junctions. Neuron 47:365–378. doi:10.1016/j.neuron.2005.06.018

    Article  PubMed  CAS  Google Scholar 

  71. Plun-Favreau H, Klupsch K, Moisoi N, Gandhi S, Kjaer S, Frith D, Harvey K, Deas E, Harvey RJ, McDonald N, Wood NW, Martins LM, Downward J (2007) The mitochondrial protease HtrA2 is regulated by Parkinson’s disease-associated kinase PINK1. Nat Cell Biol 9:1243–1252. doi:10.1038/ncb1644

    Article  PubMed  CAS  Google Scholar 

  72. Whitworth AJ, Lee JR, Ho VM, Flick R, Chowdhury R, McQuibban GA (2008) Rhomboid-7 and HtrA2/Omi act in a common pathway with the Parkinson’s disease factors Pink1 and Parkin. Dis Model Mech 1:168–174. doi:10.1242/dmm.000109

    Article  PubMed  CAS  Google Scholar 

  73. Yun J, Cao JH, Dodson MW, Clark IE, Kapahi P, Chowdhury RB, Guo M (2008) Loss-of-function analysis suggests that Omi/HtrA2 is not an essential component of the PINK1/PARKIN pathway in vivo. J Neurosci 28:14500–14510. doi:10.1523/JNEUROSCI.5141-08.2008

    Article  PubMed  CAS  Google Scholar 

  74. McQuibban GA, Lee JR, Zheng L, Juusola M, Freeman M (2006) Normal mitochondrial dynamics requires rhomboid-7 and affects Drosophila lifespan and neuronal function. Curr Biol 16:982–989. doi:10.1016/j.cub.2006.03.062

    Article  PubMed  CAS  Google Scholar 

  75. Narendra D, Tanaka A, Suen DF, Youle RJ (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183:795–803. doi:10.1083/jcb.200809125

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

KW is supported by grants GM55568 and GM69541 from N.I.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristin White.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krieser, R.J., White, K. Inside an enigma: do mitochondria contribute to cell death in Drosophila?. Apoptosis 14, 961–968 (2009). https://doi.org/10.1007/s10495-009-0362-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-009-0362-6

Keywords

Navigation