Skip to main content
Log in

Necrostatin-1 reverts shikonin-induced necroptosis to apoptosis

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Degterev et al. previously demonstrated that death receptor mediated apoptosis could be diverted to necroptosis when apoptosis signaling was blocked, suggesting that necroptosis may function as a backup mechanism to insure the elimination of damaged cells under certain conditions when apoptosis was inhibited. Here, we show that shikonin-induced necroptosis can be reverted to apoptosis in the presence of necrostatin-1 (Nec-1), a specific necroptosis inhibitor and that the death mode switch is at least partially due to the conversion from mitochondrial inner membrane permeability to mitochondrial outer membrane permeability, which is associated with Bax translocation. The data combined with the previous reports support a notion that apoptosis and necroptosis may function as reciprocal backup mechanisms of cellular demise. To the best of our knowledge, this is the first study to document a conversion from necroptosis to apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

DR:

Death receptor

Nec-1:

Necrostatin-1

SHK:

Shikonin

MIMP:

Mitochondrial inner membrane permeability

MOMP:

Mitochondrial outer membrane permeability

ROS:

Reactive oxygen species

RIP1:

Receptor-interacting protein 1

P-gp:

P-glycoprotein

MRP1:

Multidrug-resistance associated protein 1

PT pore:

Permeability transition pore

∆ψm :

Mitochondrial trans-inner-membrane potential

MMP:

Mitochondrial membrane potential

VP16:

Etoposide

STS:

Staurosporine

CsA:

Cyclosporin A

BA:

Bongkrekic acid

DIDS:

4,4′-Diisothiocyanatostilbene-2,2′-disulfonic acid disodium salt hydrate

MTR:

Mitotracker red

JC-1:

5,5′,6,6′-Tetrachloro-1,1′,3,3′-tetraethyl-benzimidazo-lylcarbocyanine iodide

Ro 5-4864:

4′-Chlorodiazepam

References

  1. Degterev A, Huang Z, Boyce M et al (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1:112–119. doi:10.1038/nchembio711

    Article  CAS  PubMed  Google Scholar 

  2. Degterev A, Hitomi J, Germscheid M et al (2008) Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 4:313–321. doi:10.1038/nchembio.83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mehta SL, Manhas N, Raghubir R (2007) Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res Brain Res Rev 54:34–66. doi:10.1016/j.brainresrev.2006.11.003

    Article  CAS  Google Scholar 

  4. Smith CC, Davidson SM, Lim SY et al (2007) Necrostatin: a potentially novel cardioprotective agent? Cardiovasc Drugs Ther 21:227–233. doi:10.1007/s10557-007-6035-1

    Article  CAS  PubMed  Google Scholar 

  5. Han W, Li L, Qiu S et al (2007) Shikonin circumvents cancer drug resistance by induction of a necroptotic death. Mol Cancer Ther 6:1641–1649. doi:10.1158/1535-7163.MCT-06-0511

    Article  CAS  PubMed  Google Scholar 

  6. Xu X, Chua CC, Kong J et al (2007) Necrostatin-1 protects against glutamate-induced glutathione depletion and caspase-independent cell death in HT-22 cells. J Neurochem 103:2004–2014. doi:10.1111/j.1471-4159.2007.04884.x

    Article  CAS  PubMed  Google Scholar 

  7. Bao L, Li Y, Deng SX et al (2006) Sitosterol-containing lipoproteins trigger free sterol-induced caspase-independent death in ACAT-competent macrophages. J Biol Chem 281:33635–33649. doi:10.1074/jbc.M606339200

    Article  CAS  PubMed  Google Scholar 

  8. Xuan Y, Hu X (2009) Naturally-occurring shikonin analogues—a class of necroptotic inducers that circumvent cancer drug resistance. Cancer Lett 274:233–242. doi:10.1016/j.canlet.2008.09.029

    Article  CAS  PubMed  Google Scholar 

  9. Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87:99–163. doi:10.1152/physrev.00013.2006

    Article  CAS  PubMed  Google Scholar 

  10. Sun M, Xu X, Lu Q et al (2007) Schisandrin B: a dual inhibitor of P-glycoprotein and multidrug resistance-associated protein 1. Cancer Lett 246:300–307. doi:10.1016/j.canlet.2006.03.009

    Article  CAS  PubMed  Google Scholar 

  11. Pan Q, Lu Q, Zhang K et al (2006) Dibenzocyclooctadiene lingnans: a class of novel inhibitors of P-glycoprotein. Cancer Chemother Pharmacol 58:99–106. doi:10.1007/s00280-005-0133-1

    Article  CAS  PubMed  Google Scholar 

  12. Samali A, Nordgren H, Zhivotovsky B et al (1999) A comparative study of apoptosis and necrosis in HepG2 cells: oxidant-induced caspase inactivation leads to necrosis. Biochem Biophys Res Commun 255:6–11. doi:10.1006/bbrc.1998.0139

    Article  CAS  PubMed  Google Scholar 

  13. Zhivotosky B, Orrenius S (2001) Assessment of apoptosis and necrosis by DNA fragmentation and morphological criteria. Curr Protoc Cell Biol 18: Unit 18.3

  14. Murphy KM, Ranganathan V, Farnsworth ML et al (2000) Bcl-2 inhibits Bax translocation from cytosol to mitochondria during drug-induced apoptosis of human tumor cells. Cell Death Differ 7:102–111. doi:10.1038/sj.cdd.4400597

    Article  CAS  PubMed  Google Scholar 

  15. Zinkel S, Gross A, Yang E (2006) BCL2 family in DNA damage and cell cycle control. Cell Death Differ 13:1351–1359. doi:10.1038/sj.cdd.4401987

    Article  CAS  PubMed  Google Scholar 

  16. Cory S, Adams JM (2002) The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2:647–656. doi:10.1038/nrc883

    Article  CAS  PubMed  Google Scholar 

  17. Grimm S, Brdiczka D (2007) The permeability transition pore in cell death. Apoptosis 12:841–855. doi:10.1007/s10495-007-0747-3

    Article  CAS  PubMed  Google Scholar 

  18. Halestrap AP, Connern CP, Griffiths EJ et al (1997) Cyclosporin A binding to mitochondrial cyclophilin inhibits the permeability transition pore and protects hearts from ischaemia/reperfusion injury. Mol Cell Biochem 174:167–172. doi:10.1023/A:1006879618176

    Article  CAS  PubMed  Google Scholar 

  19. Halestrap AP, Brennerb C (2003) The adenine nucleotide translocase: a central component of the mitochondrial permeability transition pore and key player in cell death. Curr Med Chem 10:1507–1525. doi:10.2174/0929867033457278

    Article  CAS  PubMed  Google Scholar 

  20. Bono F, Lamarche I, Prabonnaud V et al (1999) Peripheral benzodiazepine receptor agonists exhibit potent antiapoptotic activities. Biochem Biophys Res Commun 265:457–461. doi:10.1006/bbrc.1999.1683

    Article  CAS  PubMed  Google Scholar 

  21. Cesura AM, Pinard E, Schubenel R et al (2003) The voltage-dependent anion channel is the target for a new class of inhibitors of the mitochondrial permeability transition pore. J Biol Chem 278:49812–49818. doi:10.1074/jbc.M304748200

    Article  CAS  PubMed  Google Scholar 

  22. Li L, Han W, Gu Y et al (2007) Honokiol induces a necrotic cell death through the mitochondrial permeability transition pore. Cancer Res 67:4894–4903. doi:10.1158/0008-5472.CAN-06-3818

    Article  CAS  PubMed  Google Scholar 

  23. Furre IE, Shahzidi S, Luksiene Z et al (2005) Targeting PBR by hexaminolevulinate-mediated photodynamic therapy induces apoptosis through translocation of apoptosis-inducing factor in human leukemia cells. Cancer Res 65:11051–11060. doi:10.1158/0008-5472.CAN-05-0510

    Article  CAS  PubMed  Google Scholar 

  24. Panduri V, Weitzman SA, Chandel NS et al (2004) Mitochondrial-derived free radicals mediate asbestos-induced alveolar epithelial cell apoptosis. Am J Physiol 286:L1220–L1227

    CAS  Google Scholar 

  25. Lim SY, Davidson SM, Mocanu MM et al (2007) The cardioprotective effect of necrostatin requires the cyclophilin-D component of the mitochondrial permeability transition pore. Cardiovasc Drugs Ther 21:467–469. doi:10.1007/s10557-007-6067-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Antignani A, Youle RJ (2006) How do Bax and Bak lead to permeabilization of the outer mitochondrial membrane? Curr Opin Cell Biol 18:685–689. doi:10.1016/j.ceb.2006.10.004

    Article  CAS  PubMed  Google Scholar 

  27. Loeffler M, Kroemer G (2000) The mitochondrion in cell death control: certainties and incognita. Exp Cell Res 256:19–26. doi:10.1006/excr.2000.4833

    Article  CAS  PubMed  Google Scholar 

  28. Galluzzi L, Zamzami N, de La Motte Rouge T et al (2007) Methods for the assessment of mitochondrial membrane permeabilization in apoptosis. Apoptosis 12:803–813. doi:10.1007/s10495-007-0720-1

    Article  CAS  PubMed  Google Scholar 

  29. Knudson CM, Brown NM (2008) Mitochondria potential, bax “activation”, and programmed cell death. Methods Mol Biol 414:95–108

    CAS  PubMed  Google Scholar 

  30. Marzo I, Brenner C, Zamzami N et al (1998) Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science 281:2027–2031. doi:10.1126/science.281.5385.2027

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Cheung Kong Scholars Programme (National Ministry of Education, China, and Li Ka Shing Foundation, Hong Kong), China National 863 project (2007AA02Z143), China National Ministry of Health Grant (WKJ2006-2-11), the Bureau for Traditional Chinese Medicine Grant 2006Z013A, Zhejiang Province, China (all to XH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xun Hu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10495_2009_334_MOESM1_ESM.tif

Supplementary Fig. 1 Death mode induced by shikonin is dose-dependent HL60 cells were treated with shikonin at various concentrations for 12 h, nuclear morphology was detected by Hoechst 33342 staining.

10495_2009_334_MOESM2_ESM.tif

Supplementary Fig. 2 Necrostatin-1 converts shikonin-induced necroptosis to apoptosis in K562 or K562/Adr A, Cells were treated with shikonin at 10 μM in the presence or absence of Nec-1 for 12 h, and apoptotic or necrotic death rates was counted by Vital dye exclusion assay and Hoechst-staining. B & C, Activation of caspases 3, 8 and 9 in K562 and K562/Adr cells treated with shikonin for 6 h in absence or presence of Nec-1. Data are mean ±SD or representative of at least 3 independent experiments.

10495_2009_334_MOESM3_ESM.tif

Supplementary Fig. 3 Plasma membrane of apoptotic cells is not necessarily permeable to trypan blue HL60 Cells were treated with 2.5 μM shikonin for 12 h. Apoptotic or necrotic death rates was counted by vital dye exclusion assay and Hoechst-staining. Data are mean ± SD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, W., Xie, J., Li, L. et al. Necrostatin-1 reverts shikonin-induced necroptosis to apoptosis. Apoptosis 14, 674–686 (2009). https://doi.org/10.1007/s10495-009-0334-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-009-0334-x

Keywords

Navigation