Skip to main content

Advertisement

Log in

Is TRAIL the holy grail of cancer therapy?

  • Cell Death and Disease
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Inducing apoptosis has become an important approach in the development of new anti-cancer treatments. Tumour necrosis factor apoptosis inducing ligand (TRAIL) based therapies have emerged as one of the most promising examples of this as they selectively induce apoptosis in tumour cells. However, many primary tumours are inherently resistant to TRAIL-mediated apoptosis and require additional sensitisation. Here we review apoptotic and non-apoptotic TRAIL-signalling, and the therapeutic effects of TRAIL-based treatments both as monotherapy and in combination with sensitising agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70. doi:10.1016/S0092-8674(00)81683-9

    Article  PubMed  CAS  Google Scholar 

  2. Walczak H, Miller RE, Ariail K et al (1999) Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med 5:157–163. doi:10.1038/5517

    Article  PubMed  CAS  Google Scholar 

  3. Koschny R, Holland H, Sykora J et al (2007) Bortezomib sensitizes primary human astrocytoma cells of WHO grades I to IV for tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis. Clin Cancer Res 13:3403–3412. doi:10.1158/1078-0432.CCR-07-0251

    Article  PubMed  CAS  Google Scholar 

  4. Leverkus M, Sprick MR, Wachter T et al (2003) Proteasome inhibition results in TRAIL sensitization of primary keratinocytes by removing the resistance-mediating block of effector caspase maturation. Mol Cell Biol 23:777–790. doi:10.1128/MCB.23.3.777-790.2003

    Article  PubMed  CAS  Google Scholar 

  5. Ganten TM, Koschny R, Haas TL et al (2005) Proteasome inhibition sensitizes hepatocellular carcinoma cells, but not human hepatocytes, to TRAIL. Hepatology 42:588–597. doi:10.1002/hep.20807

    Article  PubMed  CAS  Google Scholar 

  6. Pitti RM, Marsters SA, Ruppert S, Donahue CJ, Moore A, Ashkenazi A (1996) Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem 271:12687–12690. doi:10.1074/jbc.271.22.12687

    Article  PubMed  CAS  Google Scholar 

  7. Wiley SR, Schooley K, Smolak PJ et al (1995) Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 3:673–682. doi:10.1016/1074-7613(95)90057-8

    Article  PubMed  CAS  Google Scholar 

  8. Pan G, Ni J, Wei YF, Yu G, Gentz R, Dixit VM (1997) An antagonist decoy receptor and a death domain-containing receptor for TRAIL. Science 277:815–818. doi:10.1126/science.277.5327.815

    Article  PubMed  CAS  Google Scholar 

  9. Walczak H, Degli-Esposti MA, Johnson RS et al (1997) TRAIL-R2: a novel apoptosis-mediating receptor for TRAIL. EMBO J 16:5386–5397. doi:10.1093/emboj/16.17.5386

    Article  PubMed  CAS  Google Scholar 

  10. Screaton GR, Mongkolsapaya J, Xu XN, Cowper AE, McMichael AJ, Bell JI (1997) TRICK2, a new alternatively spliced receptor that transduces the cytotoxic signal from TRAIL. Curr Biol 7:693–696. doi:10.1016/S0960-9822(06)00297-1

    Article  PubMed  CAS  Google Scholar 

  11. Sheridan JP, Marsters SA, Pitti RM et al (1997) Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 277:818–821. doi:10.1126/science.277.5327.818

    Article  PubMed  CAS  Google Scholar 

  12. Wu GS, Burns TF, McDonald ER 3rd et al (1997) KILLER/DR5 is a DNA damage-inducible p53-regulated death receptor gene. Nat Genet 17:141–143. doi:10.1038/ng1097-141

    Article  PubMed  CAS  Google Scholar 

  13. Degli-Esposti MA, Dougall WC, Smolak PJ, Waugh JY, Smith CA, Goodwin RG (1997) The novel receptor TRAIL-R4 induces NF-kappaB and protects against TRAIL-mediated apoptosis, yet retains an incomplete death domain. Immunity 7:813–820. doi:10.1016/S1074-7613(00)80399-4

    Article  PubMed  CAS  Google Scholar 

  14. Degli-Esposti MA, Smolak PJ, Walczak H et al (1997) Cloning and characterization of TRAIL-R3, a novel member of the emerging TRAIL receptor family. J Exp Med 186:1165–1170. doi:10.1084/jem.186.7.1165

    Article  PubMed  CAS  Google Scholar 

  15. Lahm A, Paradisi A, Green DR, Melino G (2003) Death fold domain interaction in apoptosis. Cell Death Differ 10:10–12. doi:10.1038/sj.cdd.4401203

    Article  PubMed  CAS  Google Scholar 

  16. Merino D, Lalaoui N, Morizot A, Schneider P, Solary E, Micheau O (2006) Differential inhibition of TRAIL-mediated DR5-DISC formation by decoy receptors 1 and 2. Mol Cell Biol 26:7046–7055. doi:10.1128/MCB.00520-06

    Article  PubMed  CAS  Google Scholar 

  17. Wu GS, Burns TF, Zhan Y, Alnemri ES, El-Deiry WS (1999) Molecular cloning and functional analysis of the mouse homologue of the KILLER/DR5 tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor. Cancer Res 59:2770–2775

    PubMed  CAS  Google Scholar 

  18. Schneider P, Olson D, Tardivel A et al (2003) Identification of a new murine tumor necrosis factor receptor locus that contains two novel murine receptors for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). J Biol Chem 278:5444–5454. doi:10.1074/jbc.M210783200

    Article  PubMed  CAS  Google Scholar 

  19. Vitovski S, Phillips JS, Sayers J, Croucher PI (2007) Investigating the interaction between osteoprotegerin and receptor activator of NF-kappaB or tumor necrosis factor-related apoptosis-inducing ligand: evidence for a pivotal role for osteoprotegerin in regulating two distinct pathways. J Biol Chem 282:31601–31609. doi:10.1074/jbc.M706078200

    Article  PubMed  CAS  Google Scholar 

  20. Zauli G, Rimondi E, Nicolin V, Melloni E, Celeghini C, Secchiero P (2004) TNF-related apoptosis-inducing ligand (TRAIL) blocks osteoclastic differentiation induced by RANKL plus M-CSF. Blood 104:2044–2050. doi:10.1182/blood-2004-03-1196

    Article  PubMed  CAS  Google Scholar 

  21. Cretney E, Takeda K, Yagita H, Glaccum M, Peschon JJ, Smyth MJ (2002) Increased susceptibility to tumor initiation and metastasis in TNF-related apoptosis-inducing ligand-deficient mice. J Immunol 168:1356–1361

    PubMed  CAS  Google Scholar 

  22. Finnberg N, Klein-Szanto AJ, El-Deiry WS (2008) TRAIL-R deficiency in mice promotes susceptibility to chronic inflammation and tumorigenesis. J Clin Invest 118:111–123. doi:10.1172/JCI29900

    Article  PubMed  CAS  Google Scholar 

  23. Grosse-Wilde A, Voloshanenko O, Bailey SL et al (2008) TRAIL-R deficiency in mice enhances lymph node metastasis without affecting primary tumor development. J Clin Invest 118:100–110. doi:10.1172/JCI33061

    Article  PubMed  CAS  Google Scholar 

  24. Diehl GE, Yue HH, Hsieh K et al (2004) TRAIL-R as a negative regulator of innate immune cell responses. Immunity 21:877–889. doi:10.1016/j.immuni.2004.11.008

    Article  PubMed  CAS  Google Scholar 

  25. Ehrhardt H, Fulda S, Schmid I, Hiscott J, Debatin KM, Jeremias I (2003) TRAIL induced survival and proliferation in cancer cells resistant towards TRAIL-induced apoptosis mediated by NF-kappaB. Oncogene 22:3842–3852. doi:10.1038/sj.onc.1206520

    Article  PubMed  CAS  Google Scholar 

  26. Ishimura N, Isomoto H, Bronk SF, Gores GJ (2006) Trail induces cell migration and invasion in apoptosis-resistant cholangiocarcinoma cells. Am J Physiol Gastrointest Liver Physiol 290:G129–G136. doi:10.1152/ajpgi.00242.2005

    Article  PubMed  CAS  Google Scholar 

  27. Mongkolsapaya J, Grimes JM, Chen N et al (1999) Structure of the TRAIL-DR5 complex reveals mechanisms conferring specificity in apoptotic initiation. Nat Struct Biol 6:1048–1053. doi:10.1038/14935

    Article  PubMed  CAS  Google Scholar 

  28. Kischkel FC, Hellbardt S, Behrmann I et al (1995) Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J 14:5579–5588

    PubMed  CAS  Google Scholar 

  29. Sprick MR, Weigand MA, Rieser E et al (2000) FADD/MORT1 and caspase-8 are recruited to TRAIL receptors 1 and 2 and are essential for apoptosis mediated by TRAIL receptor 2. Immunity 12:599–609. doi:10.1016/S1074-7613(00)80211-3

    Article  PubMed  CAS  Google Scholar 

  30. Kischkel FC, Lawrence DA, Chuntharapai A, Schow P, Kim KJ, Ashkenazi A (2000) Apo2L/TRAIL-dependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5. Immunity 12:611–620. doi:10.1016/S1074-7613(00)80212-5

    Article  PubMed  CAS  Google Scholar 

  31. Kischkel FC, Lawrence DA, Tinel A et al (2001) Death receptor recruitment of endogenous caspase-10 and apoptosis initiation in the absence of caspase-8. J Biol Chem 276:46639–46646. doi:10.1074/jbc.M105102200

    Article  PubMed  CAS  Google Scholar 

  32. Sprick MR, Rieser E, Stahl H, Grosse-Wilde A, Weigand MA, Walczak H (2002) Caspase-10 is recruited to and activated at the native TRAIL and CD95 death-inducing signalling complexes in a FADD-dependent manner but can not functionally substitute caspase-8. EMBO J 21:4520–4530. doi:10.1093/emboj/cdf441

    Article  PubMed  CAS  Google Scholar 

  33. Krueger A, Schmitz I, Baumann S, Krammer PH, Kirchhoff S (2001) Cellular FLICE-inhibitory protein splice variants inhibit different steps of caspase-8 activation at the CD95 death-inducing signaling complex. J Biol Chem 276:20633–20640. doi:10.1074/jbc.M101780200

    Article  PubMed  CAS  Google Scholar 

  34. Golks A, Brenner D, Fritsch C, Krammer PH, Lavrik IN (2005) c-FLIPR, a new regulator of death receptor-induced apoptosis. J Biol Chem 280:14507–14513. doi:10.1074/jbc.M414425200

    Article  PubMed  CAS  Google Scholar 

  35. Thome M, Schneider P, Hofmann K et al (1997) Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature 386:517–521. doi:10.1038/386517a0

    Article  PubMed  CAS  Google Scholar 

  36. Irmler M, Thome M, Hahne M et al (1997) Inhibition of death receptor signals by cellular FLIP. Nature 388:190–195. doi:10.1038/40657

    Article  PubMed  CAS  Google Scholar 

  37. Micheau O, Thome M, Schneider P et al (2002) The long form of FLIP is an activator of caspase-8 at the Fas death-inducing signaling complex. J Biol Chem 277:45162–45171. doi:10.1074/jbc.M206882200

    Article  PubMed  CAS  Google Scholar 

  38. Varfolomeev EE, Schuchmann M, Luria V et al (1998) Targeted disruption of the mouse Caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity 9:267–276. doi:10.1016/S1074-7613(00)80609-3

    Article  PubMed  CAS  Google Scholar 

  39. Zhang J, Cado D, Chen A, Kabra NH, Winoto A (1998) Fas-mediated apoptosis and activation-induced T-cell proliferation are defective in mice lacking FADD/Mort1. Nature 392:296–300. doi:10.1038/32681

    Article  PubMed  CAS  Google Scholar 

  40. Stennicke HR, Jurgensmeier JM, Shin H et al (1998) Pro-caspase-3 is a major physiologic target of caspase-8. J Biol Chem 273:27084–27090. doi:10.1074/jbc.273.42.27084

    Article  PubMed  CAS  Google Scholar 

  41. Barnhart BC, Alappat EC, Peter ME (2003) The CD95 type I/type II model. Semin Immunol 15:185–193. doi:10.1016/S1044-5323(03)00031-9

    Article  PubMed  CAS  Google Scholar 

  42. Waterhouse NJ, Ricci JE, Green DR (2002) And all of a sudden it’s over: mitochondrial outer-membrane permeabilization in apoptosis. Biochimie 84:113–121. doi:10.1016/S0300-9084(02)01379-2

    Article  PubMed  CAS  Google Scholar 

  43. Yin XM (2006) Bid, a BH3-only multi-functional molecule, is at the cross road of life and death. Gene 369:7–19. doi:10.1016/j.gene.2005.10.038

    Article  PubMed  CAS  Google Scholar 

  44. Koschny R, Walczak H, Ganten TM (2007) The promise of TRAIL-potential and risks of a novel anticancer therapy. J Mol Med 85:923–935. doi:10.1007/s00109-007-0194-1

    Article  PubMed  CAS  Google Scholar 

  45. LeBlanc HN, Ashkenazi A (2003) Apo2L/TRAIL and its death and decoy receptors. Cell Death Differ 10:66–75. doi:10.1038/sj.cdd.4401187

    Article  PubMed  CAS  Google Scholar 

  46. Kimberley FC, Screaton GR (2004) Following a TRAIL: update on a ligand and its five receptors. Cell Res 14:359–372. doi:10.1038/sj.cr.7290236

    Article  PubMed  CAS  Google Scholar 

  47. Sheikh MS, Huang Y, Fernandez-Salas EA et al (1999) The antiapoptotic decoy receptor TRID/TRAIL-R3 is a p53-regulated DNA damage-inducible gene that is overexpressed in primary tumors of the gastrointestinal tract. Oncogene 18:4153–4159. doi:10.1038/sj.onc.1202763

    Article  PubMed  CAS  Google Scholar 

  48. Hornstein M, Hoffmann MJ, Alexa A et al (2008) Protein phosphatase and TRAIL receptor genes as new candidate tumor genes on chromosome 8p in prostate cancer. Cancer Genomics Proteomics 5:123–136

    PubMed  CAS  Google Scholar 

  49. Horak P, Pils D, Haller G et al (2005) Contribution of epigenetic silencing of tumor necrosis factor-related apoptosis inducing ligand receptor 1 (DR4) to TRAIL resistance and ovarian cancer. Mol Cancer Res 3:335–343. doi:10.1158/1541-7786.MCR-04-0136

    Article  PubMed  CAS  Google Scholar 

  50. Saulle E, Petronelli A, Pasquini L et al (2007) Proteasome inhibitors sensitize ovarian cancer cells to TRAIL induced apoptosis. Apoptosis 12:635–655. doi:10.1007/s10495-006-0025-9

    Article  PubMed  CAS  Google Scholar 

  51. Pritzker LB, Scatena M, Giachelli CM (2004) The role of osteoprotegerin and tumor necrosis factor-related apoptosis-inducing ligand in human microvascular endothelial cell survival. Mol Biol Cell 15:2834–2841. doi:10.1091/mbc.E04-01-0059

    Article  PubMed  CAS  Google Scholar 

  52. De Toni EN, Thieme SE, Herbst A et al (2008) OPG is regulated by beta-catenin and mediates resistance to TRAIL-induced apoptosis in colon cancer. Clin Cancer Res 14:4713–4718. doi:10.1158/1078-0432.CCR-07-5019

    Article  PubMed  Google Scholar 

  53. Horak P, Pils D, Kaider A et al (2005) Perturbation of the tumor necrosis factor—related apoptosis-inducing ligand cascade in ovarian cancer: overexpression of FLIPL and deregulation of the functional receptors DR4 and DR5. Clin Cancer Res 11:8585–8591. doi:10.1158/1078-0432.CCR-05-1276

    Article  PubMed  CAS  Google Scholar 

  54. Clarke P, Tyler KL (2007) Down-regulation of cFLIP following reovirus infection sensitizes human ovarian cancer cells to TRAIL-induced apoptosis. Apoptosis 12:211–223. doi:10.1007/s10495-006-0528-4

    Article  PubMed  CAS  Google Scholar 

  55. Geserick P, Drewniok C, Hupe M et al (2008) Suppression of cFLIP is sufficient to sensitize human melanoma cells to TRAIL- and CD95L-mediated apoptosis. Oncogene 27:3211–3220. doi:10.1038/sj.onc.1210985

    Article  PubMed  CAS  Google Scholar 

  56. Siegmund D, Hadwiger P, Pfizenmaier K, Vornlocher HP, Wajant H (2002) Selective inhibition of FLICE-like inhibitory protein expression with small interfering RNA oligonucleotides is sufficient to sensitize tumor cells for TRAIL-induced apoptosis. Mol Med 8:725–732

    PubMed  CAS  Google Scholar 

  57. Ganten TM, Haas TL, Sykora J et al (2004) Enhanced caspase-8 recruitment to and activation at the DISC is critical for sensitisation of human hepatocellular carcinoma cells to TRAIL-induced apoptosis by chemotherapeutic drugs. Cell Death Differ 11(Suppl 1):S86–S96. doi:10.1038/sj.cdd.4401437

    Article  PubMed  CAS  Google Scholar 

  58. Hopkins-Donaldson S, Bodmer JL, Bourloud KB, Brognara CB, Tschopp J, Gross N (2000) Loss of caspase-8 expression in highly malignant human neuroblastoma cells correlates with resistance to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis. Cancer Res 60:4315–4319

    PubMed  CAS  Google Scholar 

  59. Makhov P, Golovine K, Uzzo RG et al (2008) Zinc chelation induces rapid depletion of the X-linked inhibitor of apoptosis and sensitizes prostate cancer cells to TRAIL-mediated apoptosis. Cell Death Differ 15:1745–1751. doi:10.1038/cdd.2008.106

    Article  PubMed  CAS  Google Scholar 

  60. Huang Y, Lu M, Wu H (2004) Antagonizing XIAP-mediated caspase-3 inhibition. Achilles’ heel of cancers? Cancer Cell 5:1–2. doi:10.1016/S1535-6108(03)00340-4

    Article  PubMed  CAS  Google Scholar 

  61. Micheau O, Merino D (2004) Controlling TRAIL-mediated caspase-3 activation. Leukemia 18:1578–1580. doi:10.1038/sj.leu.2403497

    Article  PubMed  CAS  Google Scholar 

  62. Shi Y (2004) Caspase activation, inhibition, and reactivation: a mechanistic view. Protein Sci 13:1979–1987. doi:10.1110/ps.04789804

    Article  PubMed  CAS  Google Scholar 

  63. Hinz S, Trauzold A, Boenicke L et al (2000) Bcl-XL protects pancreatic adenocarcinoma cells against CD95- and TRAIL-receptor-mediated apoptosis. Oncogene 19:5477–5486. doi:10.1038/sj.onc.1203936

    Article  PubMed  CAS  Google Scholar 

  64. Fulda S, Meyer E, Debatin KM (2002) Inhibition of TRAIL-induced apoptosis by Bcl-2 overexpression. Oncogene 21:2283–2294. doi:10.1038/sj.onc.1205258

    Article  PubMed  CAS  Google Scholar 

  65. Adams JM, Cory S (2007) The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26:1324–1337. doi:10.1038/sj.onc.1210220

    Article  PubMed  CAS  Google Scholar 

  66. Taniai M, Grambihler A, Higuchi H et al (2004) Mcl-1 mediates tumor necrosis factor-related apoptosis-inducing ligand resistance in human cholangiocarcinoma cells. Cancer Res 64:3517–3524. doi:10.1158/0008-5472.CAN-03-2770

    Article  PubMed  CAS  Google Scholar 

  67. Ndozangue-Touriguine O, Sebbagh M, Merino D, Micheau O, Bertoglio J, Breard J (2008) A mitochondrial block and expression of XIAP lead to resistance to TRAIL-induced apoptosis during progression to metastasis of a colon carcinoma. Oncogene 27:6012–6022. doi:10.1038/onc.2008.197

    Article  PubMed  CAS  Google Scholar 

  68. Vogler M, Walczak H, Stadel D et al (2008) Targeting XIAP bypasses Bcl-2-mediated resistance to TRAIL and cooperates with TRAIL to suppress pancreatic cancer growth in vitro and in vivo. Cancer Res 68:7956–7965. doi:10.1158/0008-5472.CAN-08-1296

    Article  PubMed  CAS  Google Scholar 

  69. Wajant H (2004) TRAIL and NFkappaB signaling—a complex relationship. Vitam Horm 67:101–132. doi:10.1016/S0083-6729(04)67007-5

    Article  PubMed  CAS  Google Scholar 

  70. Li H, Lin X (2008) Positive and negative signaling components involved in TNFalpha-induced NF-kappaB activation. Cytokine 41:1–8. doi:10.1016/j.cyto.2007.09.016

    Article  PubMed  CAS  Google Scholar 

  71. Harper N, Farrow SN, Kaptein A, Cohen GM, MacFarlane M (2001) Modulation of tumor necrosis factor apoptosis-inducing ligand-induced NF-kappa B activation by inhibition of apical caspases. J Biol Chem 276:34743–34752. doi:10.1074/jbc.M105693200

    Article  PubMed  CAS  Google Scholar 

  72. Varfolomeev E, Maecker H, Sharp D et al (2005) Molecular determinants of kinase pathway activation by Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand. J Biol Chem 280:40599–40608. doi:10.1074/jbc.M509560200

    Article  PubMed  CAS  Google Scholar 

  73. Secchiero P, Zerbinati C, Rimondi E et al (2004) TRAIL promotes the survival, migration and proliferation of vascular smooth muscle cells. Cell Mol Life Sci 61:1965–1974. doi:10.1007/s00018-004-4197-6

    Article  PubMed  CAS  Google Scholar 

  74. Secchiero P, Melloni E, Corallini F et al (2008) TRAIL promotes migration of human bone marrow multipotent stromal cells. Stem Cells 26(11):2955–2963

    Article  PubMed  CAS  Google Scholar 

  75. Vilimanovich U, Bumbasirevic V (2008) TRAIL induces proliferation of human glioma cells by c-FLIPL-mediated activation of ERK1/2. Cell Mol Life Sci 65:814–826. doi:10.1007/s00018-008-7513-8

    Article  PubMed  CAS  Google Scholar 

  76. Belyanskaya LL, Ziogas A, Hopkins-Donaldson S et al (2008) TRAIL-induced survival and proliferation of SCLC cells is mediated by ERK and dependent on TRAIL-R2/DR5 expression in the absence of caspase-8. Lung Cancer 60:355–365. doi:10.1016/j.lungcan.2007.11.005

    Article  PubMed  Google Scholar 

  77. Secchiero P, Gonelli A, Carnevale E et al (2003) TRAIL promotes the survival and proliferation of primary human vascular endothelial cells by activating the Akt and ERK pathways. Circulation 107:2250–2256. doi:10.1161/01.CIR.0000062702.60708.C4

    Article  PubMed  Google Scholar 

  78. Joy AM, Beaudry CE, Tran NL et al (2003) Migrating glioma cells activate the PI3-K pathway and display decreased susceptibility to apoptosis. J Cell Sci 116:4409–4417. doi:10.1242/jcs.00712

    Article  PubMed  CAS  Google Scholar 

  79. Trauzold A, Siegmund D, Schniewind B et al (2006) TRAIL promotes metastasis of human pancreatic ductal adenocarcinoma. Oncogene 25:7434–7439. doi:10.1038/sj.onc.1209719

    Article  PubMed  CAS  Google Scholar 

  80. Sanlioglu AD, Korcum AF, Pestereli E et al (2007) TRAIL death receptor-4 expression positively correlates with the tumor grade in breast cancer patients with invasive ductal carcinoma. Int J Radiat Oncol Biol Phys 69:716–723. doi:10.1016/j.ijrobp.2007.03.057

    PubMed  CAS  Google Scholar 

  81. Schneider P (2000) Production of recombinant TRAIL and TRAIL receptor: Fc chimeric proteins. Methods Enzymol 322:325–345. doi:10.1016/S0076-6879(00)22031-4

    Article  PubMed  CAS  Google Scholar 

  82. Ganten TM, Koschny R, Sykora J et al (2006) Preclinical differentiation between apparently safe and potentially hepatotoxic applications of TRAIL either alone or in combination with chemotherapeutic drugs. Clin Cancer Res 12:2640–2646. doi:10.1158/1078-0432.CCR-05-2635

    Article  PubMed  CAS  Google Scholar 

  83. Gores GJ, Kaufmann SH (2001) Is TRAIL hepatotoxic? Hepatology 34:3–6. doi:10.1053/jhep.2001.25173a

    Article  PubMed  CAS  Google Scholar 

  84. Lawrence D, Shahrokh Z, Marsters S et al (2001) Differential hepatocyte toxicity of recombinant Apo2L/TRAIL versions. Nat Med 7:383–385. doi:10.1038/86397

    Article  PubMed  CAS  Google Scholar 

  85. Ashkenazi A, Pai RC, Fong S et al (1999) Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest 104:155–162. doi:10.1172/JCI6926

    Article  PubMed  CAS  Google Scholar 

  86. Kelley SK, Ashkenazi A (2004) Targeting death receptors in cancer with Apo2L/TRAIL. Curr Opin Pharmacol 4:333–339. doi:10.1016/j.coph.2004.02.006

    Article  PubMed  CAS  Google Scholar 

  87. Buchsbaum DJ, Zhou T, Lobuglio AF (2006) TRAIL receptor-targeted therapy. Future Oncol 2:493–508. doi:10.2217/14796694.2.4.493

    Article  PubMed  CAS  Google Scholar 

  88. Natoni A, MacFarlane M, Inoue S et al (2007) TRAIL signals to apoptosis in chronic lymphocytic leukaemia cells primarily through TRAIL-R1 whereas cross-linked agonistic TRAIL-R2 antibodies facilitate signalling via TRAIL-R2. Br J Haematol 139:568–577. doi:10.1111/j.1365-2141.2007.06852.x

    Article  PubMed  CAS  Google Scholar 

  89. Chuntharapai A, Dodge K, Grimmer K et al (2001) Isotype-dependent inhibition of tumor growth in vivo by monoclonal antibodies to death receptor 4. J Immunol 166:4891–4898

    PubMed  CAS  Google Scholar 

  90. Buchsbaum DJ, Zhou T, Grizzle WE et al (2003) Antitumor efficacy of TRA-8 anti-DR5 monoclonal antibody alone or in combination with chemotherapy and/or radiation therapy in a human breast cancer model. Clin Cancer Res 9:3731–3741

    PubMed  CAS  Google Scholar 

  91. Ichikawa K, Liu W, Zhao L et al (2001) Tumoricidal activity of a novel anti-human DR5 monoclonal antibody without hepatocyte cytotoxicity. Nat Med 7:954–960. doi:10.1038/91000

    Article  PubMed  CAS  Google Scholar 

  92. Zeng Y, Wu XX, Fiscella M et al (2006) Monoclonal antibody to tumor necrosis factor-related apoptosis-inducing ligand receptor 2 (TRAIL-R2) induces apoptosis in primary renal cell carcinoma cells in vitro and inhibits tumor growth in vivo. Int J Oncol 28:421–430

    PubMed  CAS  Google Scholar 

  93. MacFarlane M, Inoue S, Kohlhaas SL et al (2005) Chronic lymphocytic leukemic cells exhibit apoptotic signaling via TRAIL-R1. Cell Death Differ 12:773–782. doi:10.1038/sj.cdd.4401649

    Article  PubMed  CAS  Google Scholar 

  94. Takeda K, Yamaguchi N, Akiba H et al (2004) Induction of tumor-specific T cell immunity by anti-DR5 antibody therapy. J Exp Med 199:437–448. doi:10.1084/jem.20031457

    Article  PubMed  CAS  Google Scholar 

  95. Pukac L, Kanakaraj P, Humphreys R et al (2005) HGS-ETR1, a fully human TRAIL-receptor 1 monoclonal antibody, induces cell death in multiple tumour types in vitro and in vivo. Br J Cancer 92:1430–1441. doi:10.1038/sj.bjc.6602487

    Article  PubMed  CAS  Google Scholar 

  96. Gazitt Y (1999) TRAIL is a potent inducer of apoptosis in myeloma cells derived from multiple myeloma patients and is not cytotoxic to hematopoietic stem cells. Leukemia 13:1817–1824. doi:10.1038/sj/leu/2401501

    Article  PubMed  CAS  Google Scholar 

  97. Mitsiades CS, Treon SP, Mitsiades N et al (2001) TRAIL/Apo2L ligand selectively induces apoptosis and overcomes drug resistance in multiple myeloma: therapeutic applications. Blood 98:795–804. doi:10.1182/blood.V98.3.795

    Article  PubMed  CAS  Google Scholar 

  98. Clodi K, Wimmer D, Li Y et al (2000) Expression of tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) receptors and sensitivity to TRAIL-induced apoptosis in primary B-cell acute lymphoblastic leukaemia cells. Br J Haematol 111:580–586. doi:10.1046/j.1365-2141.2000.02404.x

    Article  PubMed  CAS  Google Scholar 

  99. MacFarlane M, Harper N, Snowden RT et al (2002) Mechanisms of resistance to TRAIL-induced apoptosis in primary B cell chronic lymphocytic leukaemia. Oncogene 21:6809–6818. doi:10.1038/sj.onc.1205853

    Article  PubMed  CAS  Google Scholar 

  100. Snell V, Clodi K, Zhao S et al (1997) Activity of TNF-related apoptosis-inducing ligand (TRAIL) in haematological malignancies. Br J Haematol 99:618–624. doi:10.1046/j.1365-2141.1997.4393250.x

    Article  PubMed  CAS  Google Scholar 

  101. Clayer M, Bouralexis S, Evdokiou A, Hay S, Atkins GJ, Findlay DM (2001) Enhanced apoptosis of soft tissue sarcoma cells with chemotherapy: a potential new approach using TRAIL. J Orthop Surg (Hong Kong) 9:19–22

    Google Scholar 

  102. Panner A, James CD, Berger MS, Pieper RO (2005) mTOR controls FLIPS translation and TRAIL sensitivity in glioblastoma multiforme cells. Mol Cell Biol 25:8809–8823. doi:10.1128/MCB.25.20.8809-8823.2005

    Article  PubMed  CAS  Google Scholar 

  103. Todaro M, Lombardo Y, Francipane MG et al (2008) Apoptosis resistance in epithelial tumors is mediated by tumor-cell-derived interleukin-4. Cell Death Differ 15:762–772. doi:10.1038/sj.cdd.4402305

    Article  PubMed  CAS  Google Scholar 

  104. Younes A, Vose JM, Zelenetz AD et al (2005) Results of a phase 2 trial of HGS-ETR1 (agonistic human monoclonal antibody to TRAIL receptor 1) in subjects with relapsed/refractory Non-Hodgkin’s Lymphoma (NHL). Blood 106:489 ASH Annual Meeting Abstracts

    Google Scholar 

  105. Tolcher AW, Mita M, Meropol NJ et al (2007) Phase I pharmacokinetic and biologic correlative study of mapatumumab, a fully human monoclonal antibody with agonist activity to tumor necrosis factor-related apoptosis-inducing ligand receptor-1. J Clin Oncol 25:1390–1395. doi:10.1200/JCO.2006.08.8898

    Article  PubMed  CAS  Google Scholar 

  106. Hotte SJ, Hirte HW, Chen EX et al (2008) A phase 1 study of mapatumumab (fully human monoclonal antibody to TRAIL-R1) in patients with advanced solid malignancies. Clin Cancer Res 14:3450–3455. doi:10.1158/1078-0432.CCR-07-1416

    Article  PubMed  CAS  Google Scholar 

  107. Le LH, Hirte HW, Hotte SJ et al (2004) Phase I study of a fully human monoclonal antibody to the tumor necrosis factor-related apoptosis-inducing ligand death receptor 4 (TRAIL-R1) in subjects with advanced solid malignancies or non-Hodgkin’s lymphoma (NHL). J Clin Oncol 22:2533 Meeting Abstracts

    Google Scholar 

  108. Greco FA, Bonomi P, Crawford J et al (2008) Phase 2 study of mapatumumab, a fully human agonistic monoclonal antibody which targets and activates the TRAIL receptor-1, in patients with advanced non-small cell lung cancer. Lung Cancer 61:82–90. doi:10.1016/j.lungcan.2007.12.011

    Article  PubMed  Google Scholar 

  109. Plummer R, Attard G, Pacey S et al (2007) Phase 1 and pharmacokinetic study of lexatumumab in patients with advanced cancers. Clin Cancer Res 13:6187–6194. doi:10.1158/1078-0432.CCR-07-0950

    Article  PubMed  CAS  Google Scholar 

  110. Patnaik A, Wakelee H, Mita M et al (2006) HGS-ETR2—A fully human monoclonal antibody to TRAIL-R2: results of a phase I trial in patients with advanced solid tumors. J Clin Oncol 24:3012 ASCO Meeting Abstracts

    Google Scholar 

  111. Camidge D, Herbst RS, Gordon M et al (2007) A phase I safety and pharmacokinetic study of apomab, a human DR5 agonist antibody, in patients with advanced cancer. J Clin Oncol 25:3582 ASCO Meeting Abstracts

    Article  CAS  Google Scholar 

  112. LoRusso P, Hong D, Heath E et al (2007) First-in-human study of AMG 655, a pro-apoptotic TRAIL receptor-2 agonist, in adult patients with advanced solid tumors. J Clin Oncol 25:3534 ASCO Meeting Abstracts

    Article  Google Scholar 

  113. Herbst RS, Mendolson DS, Ebbinghaus S et al (2006) A phase I safety and pharmacokinetic (PK) study of recombinant Apo2L/TRAIL, an apoptosis-inducing protein in patients with advanced cancer. J Clin Oncol 24:3013. doi:10.1200/JCO.2005.04.8678 Meeting Abstracts

    Article  Google Scholar 

  114. Yada A, Yazawa M, Ishida S et al (2008) A novel humanized anti-human death receptor 5 antibody CS-1008 induces apoptosis in tumor cells without toxicity in hepatocytes. Ann Oncol 19:1060–1067. doi:10.1093/annonc/mdn015

    Article  PubMed  CAS  Google Scholar 

  115. Jonsson G, Paulie S, Grandien A (2003) High level of cFLIP correlates with resistance to death receptor-induced apoptosis in bladder carcinoma cells. Anticancer Res 23:1213–1218

    PubMed  Google Scholar 

  116. McCarthy MM, Sznol M, DiVito KA, Camp RL, Rimm DL, Kluger HM (2005) Evaluating the expression and prognostic value of TRAIL-R1 and TRAIL-R2 in breast cancer. Clin Cancer Res 11:5188–5194. doi:10.1158/1078-0432.CCR-05-0158

    Article  PubMed  CAS  Google Scholar 

  117. Strater J, Hinz U, Walczak H et al (2002) Expression of TRAIL and TRAIL receptors in colon carcinoma: TRAIL-R1 is an independent prognostic parameter. Clin Cancer Res 8:3734–3740

    PubMed  Google Scholar 

  118. Pan Y, Xu R, Peach M et al (2007) Application of pharmacodynamic assays in a phase Ia trial of Apo2L/TRAIL in patients with advanced tumors. J Clin Oncol 25:3535 ASCO Meeting Abstracts

    Google Scholar 

  119. Koschny R, Ganten TM, Sykora J et al (2007) TRAIL/bortezomib cotreatment is potentially hepatotoxic but induces cancer-specific apoptosis within a therapeutic window. Hepatology 45:649–658. doi:10.1002/hep.21555

    Article  PubMed  CAS  Google Scholar 

  120. El-Zawahry A, McKillop J, Voelkel-Johnson C (2005) Doxorubicin increases the effectiveness of Apo2L/TRAIL for tumor growth inhibition of prostate cancer xenografts. BMC Cancer 5:2. doi:10.1186/1471-2407-5-2

    Article  PubMed  CAS  Google Scholar 

  121. Shankar S, Singh TR, Srivastava RK (2004) Ionizing radiation enhances the therapeutic potential of TRAIL in prostate cancer in vitro and in vivo: intracellular mechanisms. Prostate 61:35–49. doi:10.1002/pros.20069

    Article  PubMed  CAS  Google Scholar 

  122. Shankar S, Chen X, Srivastava RK (2005) Effects of sequential treatments with chemotherapeutic drugs followed by TRAIL on prostate cancer in vitro and in vivo. Prostate 62:165–186. doi:10.1002/pros.20126

    Article  PubMed  CAS  Google Scholar 

  123. Shamimi-Noori S, Yeow WS, Ziauddin MF et al (2008) Cisplatin enhances the antitumor effect of tumor necrosis factor-related apoptosis-inducing ligand gene therapy via recruitment of the mitochondria-dependent death signaling pathway. Cancer Gene Ther 15:356–370. doi:10.1038/sj.cgt.7701120

    Article  PubMed  CAS  Google Scholar 

  124. Ray S, Almasan A (2003) Apoptosis induction in prostate cancer cells and xenografts by combined treatment with Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand and CPT-11. Cancer Res 63:4713–4723

    PubMed  CAS  Google Scholar 

  125. Chow LQ, Eckhardt SG, Gustafson DL et al (2006) HGS-ETR1, an antibody targeting TRAIL-R1, in combination with paclitaxel and carboplatin in patients with advanced solid malignancies: results of a phase 1 and PK study. J Clin Oncol 24:2515 ASCO Meeting Abstracts

    Google Scholar 

  126. Oldenhuis C, Mom C, Sleijfer S et al (2008) A phase I study with the agonistic TRAIL-R1 antibody, mapatumumab, in combination with gemcitabine and cisplatin. J Clin Oncol 26:3540 ASCO Meeting Abstracts

    Google Scholar 

  127. Sikic BI, Wakelee HA, von Mehren M et al (2007) A phase Ib study to assess the safety of lexatumumab, a human monoclonal antibody that activates TRAIL-R2, in combination with gemcitabine, pemetrexed, doxorubicin or FOLFIRI. J Clin Oncol 25:14006 ASCO Meeting Abstracts

    Google Scholar 

  128. Held J, Schulze-Osthoff K (2001) Potential and caveats of TRAIL in cancer therapy. Drug Resist Updat 4:243–252. doi:10.1054/drup.2001.0208

    Article  PubMed  CAS  Google Scholar 

  129. Mitsiades N, Mitsiades CS, Poulaki V et al (2002) Biologic sequelae of nuclear factor-kappaB blockade in multiple myeloma: therapeutic applications. Blood 99:4079–4086. doi:10.1182/blood.V99.11.4079

    Article  PubMed  CAS  Google Scholar 

  130. Daniel D, Yang B, Lawrence DA et al (2007) Cooperation of the proapoptotic receptor agonist rhApo2L/TRAIL with the CD20 antibody rituximab against non-Hodgkin lymphoma xenografts. Blood 110:4037–4046. doi:10.1182/blood-2007-02-076075

    Article  PubMed  CAS  Google Scholar 

  131. Yee L, Fanale M, Dimick K et al (2007) A phase IB safety and pharmacokinetic (PK) study of recombinant human Apo2L/TRAIL in combination with rituximab in patients with low-grade non-Hodgkin lymphoma. J Clin Oncol 25:8078 ASCO Meeting Abstracts

    Google Scholar 

  132. Sayers TJ, Brooks AD, Koh CY et al (2003) The proteasome inhibitor PS-341 sensitizes neoplastic cells to TRAIL-mediated apoptosis by reducing levels of c-FLIP. Blood 102:303–310. doi:10.1182/blood-2002-09-2975

    Article  PubMed  CAS  Google Scholar 

  133. Hallett WH, Ames E, Motarjemi M et al (2008) Sensitization of tumor cells to NK cell-mediated killing by proteasome inhibition. J Immunol 180:163–170

    PubMed  CAS  Google Scholar 

  134. Shanker A, Brooks AD, Tristan CA et al (2008) Treating metastatic solid tumors with bortezomib and a tumor necrosis factor-related apoptosis-inducing ligand receptor agonist antibody. J Natl Cancer Inst 100:649–662. doi:10.1093/jnci/djn113

    Article  PubMed  CAS  Google Scholar 

  135. Guo F, Sigua C, Tao J et al (2004) Cotreatment with histone deacetylase inhibitor LAQ824 enhances Apo-2L/tumor necrosis factor-related apoptosis inducing ligand-induced death inducing signaling complex activity and apoptosis of human acute leukemia cells. Cancer Res 64:2580–2589. doi:10.1158/0008-5472.CAN-03-2629

    Article  PubMed  CAS  Google Scholar 

  136. Rosato RR, Almenara JA, Dai Y, Grant S (2003) Simultaneous activation of the intrinsic and extrinsic pathways by histone deacetylase (HDAC) inhibitors and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) synergistically induces mitochondrial damage and apoptosis in human leukemia cells. Mol Cancer Ther 2:1273–1284

    PubMed  CAS  Google Scholar 

  137. Inoue S, MacFarlane M, Harper N, Wheat LM, Dyer MJ, Cohen GM (2004) Histone deacetylase inhibitors potentiate TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in lymphoid malignancies. Cell Death Differ 11(Suppl 2):S193–S206. doi:10.1038/sj.cdd.4401535

    Article  PubMed  CAS  Google Scholar 

  138. Nebbioso A, Clarke N, Voltz E et al (2005) Tumor-selective action of HDAC inhibitors involves TRAIL induction in acute myeloid leukemia cells. Nat Med 11:77–84. doi:10.1038/nm1161

    Article  PubMed  CAS  Google Scholar 

  139. Pathil A, Armeanu S, Venturelli S et al (2006) HDAC inhibitor treatment of hepatoma cells induces both TRAIL-independent apoptosis and restoration of sensitivity to TRAIL. Hepatology 43:425–434. doi:10.1002/hep.21054

    Article  PubMed  CAS  Google Scholar 

  140. Volkmann X, Fischer U, Bahr MJ et al (2007) Increased hepatotoxicity of tumor necrosis factor-related apoptosis-inducing ligand in diseased human liver. Hepatology 46:1498–1508. doi:10.1002/hep.21846

    Article  PubMed  CAS  Google Scholar 

  141. Frew AJ, Lindemann RK, Martin BP et al (2008) Combination therapy of established cancer using a histone deacetylase inhibitor and a TRAIL receptor agonist. Proc Natl Acad Sci USA 105:11317–11322. doi:10.1073/pnas.0801868105

    Article  PubMed  CAS  Google Scholar 

  142. Wu H, Tschopp J, Lin SC (2007) Smac mimetics and TNFalpha: a dangerous liaison? Cell 131:655–658. doi:10.1016/j.cell.2007.10.042

    Article  PubMed  CAS  Google Scholar 

  143. Petersen SL, Wang L, Yalcin-Chin A et al (2007) Autocrine TNFalpha signaling renders human cancer cells susceptible to Smac-mimetic-induced apoptosis. Cancer Cell 12:445–456. doi:10.1016/j.ccr.2007.08.029

    Article  PubMed  CAS  Google Scholar 

  144. Vince JE, Wong WW, Khan N et al (2007) IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis. Cell 131:682–693. doi:10.1016/j.cell.2007.10.037

    Article  PubMed  CAS  Google Scholar 

  145. Varfolomeev E, Blankenship JW, Wayson SM et al (2007) IAP antagonists induce autoubiquitination of c-IAPs, NF-kappaB activation, and TNFalpha-dependent apoptosis. Cell 131:669–681. doi:10.1016/j.cell.2007.10.030

    Article  PubMed  CAS  Google Scholar 

  146. Li L, Thomas RM, Suzuki H, De Brabander JK, Wang X, Harran PG (2004) A small molecule Smac mimic potentiates TRAIL- and TNFalpha-mediated cell death. Science 305:1471–1474. doi:10.1126/science.1098231

    Article  PubMed  CAS  Google Scholar 

  147. Petrucci E, Pasquini L, Petronelli A et al (2007) A small molecule Smac mimic potentiates TRAIL-mediated cell death of ovarian cancer cells. Gynecol Oncol 105:481–492. doi:10.1016/j.ygyno.2007.01.011

    Article  PubMed  CAS  Google Scholar 

  148. Shrader M, Pino MS, Lashinger L et al (2007) Gefitinib reverses TRAIL resistance in human bladder cancer cell lines via inhibition of AKT-mediated X-linked inhibitor of apoptosis protein expression. Cancer Res 67:1430–1435. doi:10.1158/0008-5472.CAN-06-1224

    Article  PubMed  CAS  Google Scholar 

  149. Garcia-Echeverria C, Sellers WR (2008) Drug discovery approaches targeting the PI3K/Akt pathway in cancer. Oncogene 27:5511–5526. doi:10.1038/onc.2008.246

    Article  PubMed  CAS  Google Scholar 

  150. Bremer E, Kuijlen J, Samplonius D, Walczak H, de Leij L, Helfrich W (2004) Target cell-restricted and -enhanced apoptosis induction by a scFv:sTRAIL fusion protein with specificity for the pancarcinoma-associated antigen EGP2. Int J Cancer 109:281–290. doi:10.1002/ijc.11702

    Article  PubMed  CAS  Google Scholar 

  151. Bremer E, Samplonius D, Kroesen BJ, van Genne L, de Leij L, Helfrich W (2004) Exceptionally potent anti-tumor bystander activity of an scFv:sTRAIL fusion protein with specificity for EGP2 toward target antigen-negative tumor cells. Neoplasia 6:636–645. doi:10.1593/neo.04229

    Article  PubMed  CAS  Google Scholar 

  152. Bremer E, Samplonius DF, Peipp M et al (2005) Target cell-restricted apoptosis induction of acute leukemic T cells by a recombinant tumor necrosis factor-related apoptosis-inducing ligand fusion protein with specificity for human CD7. Cancer Res 65:3380–3388

    PubMed  CAS  Google Scholar 

  153. Stieglmaier J, Bremer E, Kellner C et al (2008) Selective induction of apoptosis in leukemic B-lymphoid cells by a CD19-specific TRAIL fusion protein. Cancer Immunol Immunother 57:233–246. doi:10.1007/s00262-007-0370-8

    Article  PubMed  Google Scholar 

  154. Bremer E, Samplonius DF, van Genne L et al (2005) Simultaneous inhibition of epidermal growth factor receptor (EGFR) signaling and enhanced activation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor-mediated apoptosis induction by an scFv:sTRAIL fusion protein with specificity for human EGFR. J Biol Chem 280:10025–10033. doi:10.1074/jbc.M413673200

    Article  PubMed  CAS  Google Scholar 

  155. Griffith TS, Broghammer EL (2001) Suppression of tumor growth following intralesional therapy with TRAIL recombinant adenovirus. Mol Ther 4:257–266. doi:10.1006/mthe.2001.0439

    Article  PubMed  CAS  Google Scholar 

  156. Herman JR, Adler HL, Aguilar-Cordova E et al (1999) In situ gene therapy for adenocarcinoma of the prostate: a phase I clinical trial. Hum Gene Ther 10:1239–1249. doi:10.1089/10430349950018229

    Article  PubMed  CAS  Google Scholar 

  157. Ravi R, Bedi GC, Engstrom LW et al (2001) Regulation of death receptor expression and TRAIL/Apo2L-induced apoptosis by NF-kappaB. Nat Cell Biol 3:409–416. doi:10.1038/35070096

    Article  PubMed  CAS  Google Scholar 

  158. Romagnoli M, Desplanques G, Maiga S et al (2007) Canonical nuclear factor kappaB pathway inhibition blocks myeloma cell growth and induces apoptosis in strong synergy with TRAIL. Clin Cancer Res 13:6010–6018. doi:10.1158/1078-0432.CCR-07-0140

    Article  PubMed  CAS  Google Scholar 

  159. Roue G, Perez-Galan P, Lopez-Guerra M, Villamor N, Campo E, Colomer D (2007) Selective inhibition of IkappaB kinase sensitizes mantle cell lymphoma B cells to TRAIL by decreasing cellular FLIP level. J Immunol 178:1923–1930

    PubMed  CAS  Google Scholar 

  160. Kim KM, Song JJ, An JY, Kwon YT, Lee YJ (2005) Pretreatment of acetylsalicylic acid promotes tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by down-regulating BCL-2 gene expression. J Biol Chem 280:41047–41056. doi:10.1074/jbc.M503713200

    Article  PubMed  CAS  Google Scholar 

  161. Uno T, Takeda K, Kojima Y et al (2006) Eradication of established tumors in mice by a combination antibody-based therapy. Nat Med 12:693–698. doi:10.1038/nm1405

    Article  PubMed  CAS  Google Scholar 

  162. Takeda K, Kojima Y, Ikejima K et al (2008) Death receptor 5 mediated-apoptosis contributes to cholestatic liver disease. Proc Natl Acad Sci USA 105:10895–10900. doi:10.1073/pnas.0802702105

    Article  PubMed  CAS  Google Scholar 

  163. Suntharalingam G, Perry MR, Ward S et al (2006) Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med 355:1018–1028. doi:10.1056/NEJMoa063842

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henning Walczak.

Additional information

T. Newsom-Davis and S. Prieske contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Newsom-Davis, T., Prieske, S. & Walczak, H. Is TRAIL the holy grail of cancer therapy?. Apoptosis 14, 607–623 (2009). https://doi.org/10.1007/s10495-009-0321-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-009-0321-2

Keywords

Navigation