Advertisement

Apoptosis

, 13:1303 | Cite as

Apoptosis-related genes change their expression with age and hearing loss in the mouse cochlea

  • Sherif F. Tadros
  • Mary D’Souza
  • Xiaoxia Zhu
  • Robert D. FrisinaEmail author
Original Paper

Abstract

To understand possible causative roles of apoptosis gene regulation in age-related hearing loss (presbycusis), apoptotic gene expression patterns in the CBA mouse cochlea of four different age and hearing loss groups were compared, using GeneChip and real-time (qPCR) microarrays. GeneChip transcriptional expression patterns of 318 apoptosis-related genes were analyzed. Thirty eight probes (35 genes) showed significant differences in expression. The significant gene families include Caspases, B-cell leukemia/lymphoma2 family, P53, Calpains, Mitogen activated protein kinase family, Jun oncogene, Nuclear factor of kappa light chain gene enhancer in B-cells inhibitor-related and tumor necrosis factor-related genes. The GeneChip results of 31 genes were validated using the new TaqMan® Low Density Array (TLDA). Eight genes showed highly correlated results with the GeneChip data. These genes are: activating transcription factor3, B-cell leukemia/lymphoma2, Bcl2-like1, caspase4 apoptosis-related cysteine protease 4, Calpain2, dual specificity phosphatase9, tumor necrosis factor receptor superfamily member12a, and Tumor necrosis factor superfamily member13b, suggesting they may play critical roles in inner ear aging.

Keywords

Apoptosis Cochlea Hearing loss Gene expression PCR Presbycusis 

Notes

Acknowledgements

The research was funded by NIH Grant P01 AG09524 from the Nat. Inst. on Aging, and P30 DC05409 from the Nat. Inst. on Deafness & Comm. Disorders.

References

  1. 1.
    Melino G, Knight RA, Nicotera P (2005) How many ways to die? How many different models of cell death? Cell Death Differ 12:1457–1462. doi: 10.1038/sj.cdd.4401781 PubMedCrossRefGoogle Scholar
  2. 2.
    Stoka V, Turk V, Turk B (2007) Lysosomal cysteine cathepsins: signaling pathways in apoptosis. Biol Chem 388:555–560. doi: 10.1515/BC.2007.064 PubMedCrossRefGoogle Scholar
  3. 3.
    Yasuhara S, Asai A, Sahani N, Martyn JAJ (2007) Mitochondria, endoplasmic reticulum, and alternative pathways of cell death in critical illness. Crit Care Med 35(9):488–495. doi: 10.1097/01.CCM.0000278045.91575.30 CrossRefGoogle Scholar
  4. 4.
    Fischer U, Schulze-Osthoff K (2005) Apoptosis-based therapies and drug targets. Cell Death Differ 12:942–961. doi: 10.1038/sj.cdd.4401556 PubMedCrossRefGoogle Scholar
  5. 5.
    Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516. doi: 10.1080/01926230701320337 PubMedCrossRefGoogle Scholar
  6. 6.
    Clarke PG (1990) Developmental cell death: morphological diversity and multiple mechanisms. Anat Embryol (Berl) 181:195–213. doi: 10.1007/BF00174615 Google Scholar
  7. 7.
    Ihara T, Yamamoto T, Sugamata M, Okumura H, Ueno Y (1998) The process of ultrastructural changes from nuclei to apoptotic body. Virchows Arch 433:443–447. doi: 10.1007/s004280050272 PubMedCrossRefGoogle Scholar
  8. 8.
    LeDoux SP, Druzhyna NM, Hollensworth SB, Harrison JF, Wilson GL (2007) Mitochondrial and repair: a critical player in the response of cells of the CNS to genotoxic insults. Neuroscience 145:1249–1259. doi: 10.1016/j.neuroscience.2006.10.002 PubMedCrossRefGoogle Scholar
  9. 9.
    Vaux DL, Korsmeyer SJ (1999) Cell death in development. Cell 96:245–254. doi: 10.1016/S0092-8674(00)80564-4 PubMedCrossRefGoogle Scholar
  10. 10.
    Mathiasen IS, Sergeev IN, Bastholm L, Elling F, Norman AW, Jaattela M (2002) Calcium and calpain as key mediators of apoptosis-like death induced by vitamin D compounds in breast cancer cells. J Biol Chem 277:30738–30745. doi: 10.1074/jbc.M201558200 PubMedCrossRefGoogle Scholar
  11. 11.
    Haeberlein SLB (2004) Mitochondrial function in apoptotic neuronal cell death. Neurochem Res 29(3):521–530. doi: 10.1023/B:NERE.0000014823.74782.b7 PubMedCrossRefGoogle Scholar
  12. 12.
    Leyton L, Quest AF (2004) Supramolecular complex formation in cell signaling and disease; an update on a recurrent theme in cell life and death. Biol Res 37:29–43PubMedGoogle Scholar
  13. 13.
    Liu X, Van Vleet T, Schnellmann RG (2004) The role of calpain in oncotic cell death. Annu Rev Pharmacol Toxicol 44:349–370. doi: 10.1146/annurev.pharmtox.44.101802.121804 PubMedCrossRefGoogle Scholar
  14. 14.
    Hetz CA, Hunn M, Rojas P, Torres V, Leyton L, Quest AF (2002) Caspase-dependent initiation of apoptosis and necrosis by the Fas receptor in lymphoid cells: onset of necrosis is associated with delayed ceramide increase. J Cell Sci 115:4671–4683. doi: 10.1242/jcs.00153 PubMedCrossRefGoogle Scholar
  15. 15.
    Hetz CA, Torres V, Quest AF (2005) Beyond apoptosis: nonapoptotic cell death in physiology and disease. Biochem Cell Biol 83(5):579–588. doi: 10.1139/o05-065 PubMedCrossRefGoogle Scholar
  16. 16.
    Demarchi F, Bertoli C, Copetti T, Tanida I, Brancolini C, Eskelinen EL et al (2006) Calpain is required for macroautophagy in mammalian cells. J Cell Biol 175:595–605. doi: 10.1083/jcb.200601024 PubMedCrossRefGoogle Scholar
  17. 17.
    Skulachev VP (1996) Why are mitochondria involved in apoptosis? Permeability transition pores and apoptosis as selective mechanisms to eliminate superoxide-producing mitochondria and cells. FEBS Lett 397:7–10. doi: 10.1016/0014-5793(96)00989-1 PubMedCrossRefGoogle Scholar
  18. 18.
    Ferri KF, Kroemer G (2001) Mitochondria—the suicide organelles. Bioessays 23:111–115. doi:10.1002/1521-1878(200102)23:2<111::AID-BIES1016>3.0.CO;2-YPubMedCrossRefGoogle Scholar
  19. 19.
    Josa A, Susin SA, Daugas E, Stanford WL, Cho SK, Li CYJ et al (2001) Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature 410:549–554. doi: 10.1038/35069004 CrossRefGoogle Scholar
  20. 20.
    Guicciardi ME, Deussing J, Miyoshi H, Bronk SF, Svingen PA, Peters C et al (2000) Cathepsin B contributes to TNF-α mediated hepatocyte apoptosis by promoting mitochondrial release of cytochrome c. J Clin Invest 106:1127–1137. doi: 10.1172/JCI9914 PubMedCrossRefGoogle Scholar
  21. 21.
    Stoka V, Turk B, Schendel SL, Kim TH, Cirman T, Snipas SJ et al (2001) Lysosomal protease pathways to apoptosis. Cleavage of bid, not pro-caspases, is the most likely route. J Biol Chem 276:3149–3157. doi: 10.1074/jbc.M008944200 PubMedCrossRefGoogle Scholar
  22. 22.
    Hail N Jr, Carter BZ, Konopleva M, Andreeff M (2006) Apoptosis effector mechanisms: a requiem performed in different keys. Apoptosis 11:889–904. doi: 10.1007/s10495-006-6712-8 PubMedCrossRefGoogle Scholar
  23. 23.
    Falschlehner C, Emmerich CH, Gerlach B, Walczak H (2007) TRAIL signaling: decisions between life and death. Int J Biochem Cell Biol 39:1462–1475. doi: 10.1016/j.biocel.2007.02.007 PubMedCrossRefGoogle Scholar
  24. 24.
    Tadros SF, D’Souza M, Zettel ML, Zhu X, Frisina RD (2007) Glutamate-related gene expression changes with age in the mouse auditory midbrain. Brain Res 1127:1–9. doi: 10.1016/j.brainres.2006.09.081 PubMedCrossRefGoogle Scholar
  25. 25.
    Jacobson M, Kim S, Romney J, Zhu X, Frisina RD (2003) Contralateral suppression of distortion-product otoacoustic emissions declines with age: a comparison of findings in CBA mice with human listeners. Laryngoscope 113(10):1707–1713. doi: 10.1097/00005537-200310000-00009 PubMedCrossRefGoogle Scholar
  26. 26.
    Guimaraes P, Zhu X, Cannon T, Kim S, Frisina RD (2004) Sex differences in distortion product otoacoustic emissions as a function of age in CBA mice. Hear Res 192(1–2):83–89. doi: 10.1016/j.heares.2004.01.013 PubMedCrossRefGoogle Scholar
  27. 27.
    Varghese GI, Zhu X, Frisina RD (2005) Age-related declines in distortion product otoacoustic emissions utilizing pure tone contralateral stimulation in CBA/CaJ mice. Hear Res 209:60–67. doi: 10.1016/j.heares.2005.06.006 PubMedCrossRefGoogle Scholar
  28. 28.
    Giulietti A, Overbergh L, Valckx D, Decallonne B, Bouillon R, Mathieu C (2001) An overview of real-time quantitative PCR: applications to quantify cytokine gene expression. Methods 4:386–401. doi: 10.1006/meth.2001.1261 CrossRefGoogle Scholar
  29. 29.
    Baik SY, Jung KH, Choi MR, Yang BH, Kim SH, Lee JS et al (2005) Fluoxetine-induced up-regulation of 14-3-3zeta and tryptophan hydroxylase levels in RBL-2H3 cells. Neurosci Lett 374:53–57. doi: 10.1016/j.neulet.2004.10.047 PubMedCrossRefGoogle Scholar
  30. 30.
    Van De Water TR, Lallemend F, Eshraghi AA, Ahsan S, He J, Guzman J et al (2004) Caspases, the enemy within, and their role in oxidative stress-induced apoptosis of inner ear sensory cells. Otol Neurotol 25:627–632. doi: 10.1097/00129492-200407000-00035 CrossRefGoogle Scholar
  31. 31.
    Cheng AG, Cunningham LL, Ruble EW (2005) Mechanisms of hair cell death and protection. Curr Opin Otolaryngol Head Neck Surg 13:343–348. doi: 10.1097/01.moo.0000186799.45377.63 PubMedCrossRefGoogle Scholar
  32. 32.
    Ylikoski J, Xing-Qun L, Virkkala J, Pirvola U (2002) Blockade of c-Jun N-terminal kinase pathway attenuates gentamicin-induced cochlear and vestibular hair cell death. Hear Res 163:71–81. doi: 10.1016/S0378-5955(01)00380-X PubMedCrossRefGoogle Scholar
  33. 33.
    Wang J, Van De Water TR, Bonny C, De Ribaupierre F, Puel JL, Zine A (2003) A peptide inhibitor of c-Jun N-terminal kinase protects against both aminoglycoside and acoustic trauma-induced auditory hair cell death and hearing loss. J Neurosci 23:8596–8607PubMedGoogle Scholar
  34. 34.
    Scarpidis U, Madnani D, Shoemaker C, Fletcher CH, Kojima K, Eshraghi AA et al (2003) Arrest of apoptosis in auditory neurons: implications for sensorineural preservation in cochlear implantation. Otol Neurotol 24:409–417. doi: 10.1097/00129492-200305000-00011 PubMedCrossRefGoogle Scholar
  35. 35.
    Matsui JI, Gale JE, Warchol ME (2004) Critical signaling events during the aminoglycoside-induced death of sensory hair cells in vitro. J Neurobiol 61(2):250–266. doi: 10.1002/neu.20054 PubMedCrossRefGoogle Scholar
  36. 36.
    Zine A, Van De Water TR (2004) The MAPK/JNK signalling pathway offers potential therapeutic targets for the prevention of acquired deafness. Curr Drug Target CNS Neurol Disord 3(4):325–332. doi: 10.2174/1568007043337166 CrossRefGoogle Scholar
  37. 37.
    Sugahara K, Rubel EW, Cunningham LL (2006) JNK signaling in neomycin-induced vestibular hair cell death. Hear Res 221:128–135. doi: 10.1016/j.heares.2006.08.009 PubMedCrossRefGoogle Scholar
  38. 38.
    Zhang M, Liu W, Ding D, Salvi R (2003) Pifithrin-α suppresses p53 and protects cochlear and vestibular hair cells from cisplatin-induced apoptosis. Neuroscience 120:191–205. doi: 10.1016/S0306-4522(03)00286-0 PubMedCrossRefGoogle Scholar
  39. 39.
    Alam SA, Oshima T, Suzuki M, Kawase T, Takasaka T, Ikeda K (2001) The expression of apoptosis-related proteins in the aged cochlea of Mongolian gerbils. Laryngoscope 111:528–534. doi: 10.1097/00005537-200103000-00026 PubMedCrossRefGoogle Scholar
  40. 40.
    Kitahara T, Li-Korotky HS, Balaban CD (2005) Regulation of mitochondrial uncoupling proteins in mouse inner ear ganglion cells in response to systemic kanamycin challenge. Neuroscience 135:639–653. doi: 10.1016/j.neuroscience.2005.06.056 PubMedCrossRefGoogle Scholar
  41. 41.
    Lang H, Schulte BA, Zhou D, Smythe N, Spicer SS, Schmiedt RA (2006) Nuclear factor kappaB deficiency is associated with auditory nerve degeneration and increased noise-induced hearing loss. J Neurosci 26(13):3541–3550. doi: 10.1523/JNEUROSCI.2488-05.2006 PubMedCrossRefGoogle Scholar
  42. 42.
    Bodmer JL, Schneider P, Tschopp J (2002) The molecular architecture of the TNF superfamily. Trends Biochem Sci 27(1):19–26. doi: 10.1016/S0968-0004(01)01995-8 PubMedCrossRefGoogle Scholar
  43. 43.
    Gaur U, Aggarwal BB (2003) Regulation of proliferation, survival and apoptosis by members of the TNF superfamily. Biochem Pharmacol 66:1403–1408. doi: 10.1016/S0006-2952(03)00490-8 PubMedCrossRefGoogle Scholar
  44. 44.
    Aggarwal BB (2003) Signaling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol 3(9):745–756. doi: 10.1038/nri1184 PubMedCrossRefGoogle Scholar
  45. 45.
    Ch’en PFT, Xu XG, Liu XS, Liu Y, Song CJ, Screaton GR et al (2005) Characterization of monoclonal antibodies to the TNF and TNF receptor families. Cell Immunol 236:78–85. doi: 10.1016/j.cellimm.2005.08.010 PubMedCrossRefGoogle Scholar
  46. 46.
    Schneider P, MacKay F, Steiner V, Hofmann K, Bodmer J, Holler N et al (1999) BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth. J Exp Med 189:1747–1756. doi: 10.1084/jem.189.11.1747 PubMedCrossRefGoogle Scholar
  47. 47.
    Wilson CA, Browning JL (2002) Death of HT29 adenocarcinoma cells induced by TNF family receptor activation is caspase-independent and displays features of both apoptosis and necrosis. Cell Death Differ 9:1321–1333. doi: 10.1038/sj.cdd.4401107 PubMedCrossRefGoogle Scholar
  48. 48.
    Nakayama M, Ishidoh K, Kayagaki N, Kojima Y, Yamaguchi N, Nakano H et al (2002) Multiple pathways of TWEAK-induced cell death. J Immunol 168:734–743PubMedGoogle Scholar
  49. 49.
    Nakayama M, Ishidoh K, Kojima Y, Harada N, Kominami E, Okumura K et al (2003) Fibroblast growth factor-inducible 14 mediates multiple pathways of TWEAK-induced cell death. J Immunol 170:341–348PubMedGoogle Scholar
  50. 50.
    Potrovita I, Zhang W, Burkly L, Hahm K, Lincecum J, Wang MZ et al (2004) Tumor necrosis factor-like weak inducer of apoptosis-induced neurodegeneration. J Neurosci 24(38):8237–8244. doi: 10.1523/JNEUROSCI.1089-04.2004 PubMedCrossRefGoogle Scholar
  51. 51.
    Baxter FO, Came PJ, Abell K, Kedjouar B, Huth M, Rajewsky K et al (2006) IKKβ/2 induces TWEAK and apoptosis in mammary epithelial cells. Development 133:3485–3494. doi: 10.1242/dev.02502 PubMedCrossRefGoogle Scholar
  52. 52.
    Winkles JA, Tran NL, Brown SAN, Stains N, Cunliffe HE, Berens ME (2007) Role of TWEAK and Fn14 in tumor biology. Front Biosci 12:2761–2771. doi: 10.2741/2270 PubMedCrossRefGoogle Scholar
  53. 53.
    Feng SL, Guo Y, Factor VM, Thorgeirsson SS, Bell DW, Testa JR et al (2000) The Fn14 immediate-early response gene is induced during liver regeneration and highly expressed in both human and murine hepatocellular carcinomas. Am J Pathol 156:1253–1261PubMedGoogle Scholar
  54. 54.
    Meighan-Mantha RL, Hsu DK, Guo Y, Brown SAN, Feng SLY, Peifley KA et al (1999) The mitogen-inducible Fn14 gene encodes a type I transmembrane protein that modulates fibroblast adhesion and migration. J Biol Chem 274:33166–33176. doi: 10.1074/jbc.274.46.33166 PubMedCrossRefGoogle Scholar
  55. 55.
    Wiley SR, Winkles JA (2003) TWEAK, a member of the TNF superfamily, is a multifunctional cytokine that binds the TweakR/Fn14 receptor. Cytokine Growth Factor Rev 14(3–4):241–249. doi: 10.1016/S1359-6101(03)00019-4 PubMedCrossRefGoogle Scholar
  56. 56.
    Kim SH, Lee WH, Kwon BS, Oh GT, Choi YH, Park JE (2001) Tumor necrosis factor receptor superfamily 12 may destabilize atherosclerotic plaques by inducing matrix metalloproteinases. Jpn Circ J 65:136–138. doi: 10.1253/jcj.65.136 PubMedCrossRefGoogle Scholar
  57. 57.
    Han S, Yoon K, Lee K, Kim K, Jang H, Lee NK et al (2003) TNF-related weak inducer of apoptosis receptor, a TNF receptor superfamily member, activates NF-κB through TNF receptor-associated factors. Biochem Biophys Res Commun 305:789–796. doi: 10.1016/S0006-291X(03)00852-0 PubMedCrossRefGoogle Scholar
  58. 58.
    Saitoh T, Nakayama M, Nakano H, Yagita H, Yamamoto N, Yamaoka S (2003) TWEAK induces NF-κB2 p100 processing and long lasting NF-κB activation. J Biol Chem 278(38):36005–36012. doi: 10.1074/jbc.M304266200 PubMedCrossRefGoogle Scholar
  59. 59.
    He L, Grammer AC, Wu X, Lipsky PE (2004) TRAF3 forms heterotrimers with TRAF2 and modulates its ability to mediate NF-κB activation. J Biol Chem 279(53):55855–55865. doi: 10.1074/jbc.M407284200 PubMedCrossRefGoogle Scholar
  60. 60.
    Pachiappan A, Thwin MM, Manikandan J, Gopalakrishnakone P (2005) Glial inflammation and neurodegeneration induced by candoxin, a novel neurotoxin from Bungarus candidus venom: global gene expression analysis using microarray. Toxicon 46:883–899. doi: 10.1016/j.toxicon.2005.08.017 PubMedCrossRefGoogle Scholar
  61. 61.
    Moore PA, Belvedere O, Orr A, Pieri K, LaFleur DW, Feng P et al (1999) BLyS: member of the tumor necrosis factor family and B lymphocyte stimulator. Science 285:260–263. doi: 10.1126/science.285.5425.260 PubMedCrossRefGoogle Scholar
  62. 62.
    Schneider P, Schwenzer R, Haas E, Muhlenbeck F, Schubert G, Scheurich P et al (1999) TWEAK can induce cell death via endogenous TNF and TNF receptor 1. Eur J Immunol 29:1785–1792. doi:10.1002/(SICI)1521-4141(199906)29:06<1785::AID-IMMU1785>3.0.CO;2-UPubMedCrossRefGoogle Scholar
  63. 63.
    Nardelli B, Belvedere O, Roschke V, Moore PA, Olsen HS, Migone TS et al (2001) Synthesis and release of B-lymphocyte stimulator from myeloid cells. Blood 97:198–204. doi: 10.1182/blood.V97.1.198 PubMedCrossRefGoogle Scholar
  64. 64.
    Kawasaki A, Tsuchiya N, Fukazawa T, Hashimoto H, Tokunaga K (2002) Analysis on the association of human BLYS (BAFF, TNFSF13B) polymorphisms with systemic lupus erythematosus and rheumatoid arthritis. Genes Immun 3:424–429. doi: 10.1038/sj.gene.6363923 PubMedCrossRefGoogle Scholar
  65. 65.
    Kern C, Cornuel JF, Billard C, Tang R, Rouillard D, Stenou V et al (2004) Involvement of BAFF and APRIL in the resistance to apoptosis of B-CLL through an autocrine pathway. Blood 103:679–688. doi: 10.1182/blood-2003-02-0540 PubMedCrossRefGoogle Scholar
  66. 66.
    Ramanujam M, Davidson A (2004) The current status of targeting BAFF/BLyS for autoimmune diseases. Arthritis Res Ther 6:197–202. doi: 10.1186/ar1222 PubMedCrossRefGoogle Scholar
  67. 67.
    Gross JA, Johnston J, Murdi S, Enselman R, Dillon SR, Madden K et al (2000) TACI and BCMA are receptors for a TNF homologue implicated in B-cell autoimmune disease. Nature 404:995–999. doi: 10.1038/35010115 PubMedCrossRefGoogle Scholar
  68. 68.
    Croker JA, Kimberly RP (2005) SLE: challenges and candidates in human disease. Trends Immunol 26(11):580–586. doi: 10.1016/j.it.2005.09.001 PubMedCrossRefGoogle Scholar
  69. 69.
    Davis RJ (2000) Signal transduction by the JNK group of MAP kinases. Cell 103:239–252. doi: 10.1016/S0092-8674(00)00116-1 PubMedCrossRefGoogle Scholar
  70. 70.
    Chang L, Karin M (2001) Mammalian MAP kinase signaling cascades. Nature 410:37–40PubMedCrossRefGoogle Scholar
  71. 71.
    Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K et al (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22:153–183PubMedCrossRefGoogle Scholar
  72. 72.
    Johnson GL, Lapadat R (2002) Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298:1911–1912PubMedCrossRefGoogle Scholar
  73. 73.
    Theodosiou A, Ashworth A (2002) MAP kinase phospatases. Genome Biol 3(7):1–10CrossRefGoogle Scholar
  74. 74.
    Wada T, Penninger JM (2004) Mitogen-activated protein kinases in apoptosis regulation. Oncogene 23:2838–2849PubMedCrossRefGoogle Scholar
  75. 75.
    Dickinson RJ, Keyse SM (2006) Diverse physiological functions for dual-specificity MAP kinase phosphatases. J Cell Sci 119(22):4607–4615PubMedCrossRefGoogle Scholar
  76. 76.
    Marshall CJ (1995) Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80:179–185PubMedCrossRefGoogle Scholar
  77. 77.
    Sabbagh W Jr, Flatauer LJ, Bardwell AJ, Bardwell L (2001) Specificity of MAP kinase signaling in yeast differentiation involves transient versus sustained MAPK activation. Mol Cell 8:683–691PubMedCrossRefGoogle Scholar
  78. 78.
    Ebisuya M, Kondoh K, Nishida E (2005) The duration, magnitude and compartmentalization of ERK MAP kinase activity: mechanisms for providing signaling specificity. J Cell Sci 118:2997–3002PubMedCrossRefGoogle Scholar
  79. 79.
    Owens DM, Keyse SM (2007) Differential regulation of MAP kinase signaling by dual-specificity protein phosphatases. Oncogene 26:3203–3213PubMedCrossRefGoogle Scholar
  80. 80.
    Groom L, Sneddon AA, Alessi DR, Dowd S, Keyse SM (1996) Differential regulation of the MAP, SAP and RK/p38 kinases by Pyst1, a novel cytosolic dual-specificity phosphatase. EMBO J 15:3621–3632PubMedGoogle Scholar
  81. 81.
    Camps M, Nichols A, Gillieron C, Antonsson B, Muda M, Chabert C et al (1998) Catalytic activation of the phosphatase MKP-3 by ERK2 mitogen-activated protein kinase. Science 280:1262–1265PubMedCrossRefGoogle Scholar
  82. 82.
    Dowd S, Sneddon AA, Keyse SM (1998) Isolation of the human genes encoding the Pyst1 and Pyst2 phosphatases: characterisation of Pyst2 as a cytosolic dual-specificity MAP kinase phosphatase and its catalytic activation by both MAP and SAP kinases. J Cell Sci 111:3389–3399PubMedGoogle Scholar
  83. 83.
    Dickinson RJ, Williams DJ, Slack DN, Williamson J, Seternes OM, Keyse SM (2002) Characterization of a murine gene encoding a developmentally regulated cytoplasmic dual-specificity mitogen-activated protein kinase phosphatase. Biochem J 364:145–155PubMedGoogle Scholar
  84. 84.
    Christie GR, Williams DJ, MacIsaac F, Dickinson RJ, Rosewell I, Keyse SM (2005) The dual-specificity protein phosphatase DUSP9/MKP-4 is essential for placental function but it is not required for normal embryonic development. Mol Cell Biol 25(18):8323–8333PubMedCrossRefGoogle Scholar
  85. 85.
    Teng CH, Huang WN, Meng TC (2007) Several dual specificity phosphatases coordinate to control the magnitude and duration of JNK activation in signaling response to oxidative stress. J Biol Chem 282(39):28395–28407PubMedCrossRefGoogle Scholar
  86. 86.
    Liang G, Wolfgang CD, Chen BPC, Chen TH, Hai T (1996) ATF3 gene, genomic organization, promoter, and regulation. J Biol Chem 271(3):1695–1701PubMedCrossRefGoogle Scholar
  87. 87.
    McCully KS (1996) Homocysteine and vascular disease. Nat Med 2:386–389PubMedCrossRefGoogle Scholar
  88. 88.
    Hai T, Wolfgang CD, Marsee DK, Allen AE, Sivaprasad U (1999) ATF3 and stress responses. Gene Expr 7(4–6):321–335PubMedGoogle Scholar
  89. 89.
    Cai Y, Zhang C, Nawa T, Aso T, Tanaka M, Oshiro S et al (2000) Homocysteine-responsive ATF3 gene expression in human vascular endothelial cells: activation of c-Jun NH2-terminal kinase and promoter response element. Blood 96:2140–2148PubMedGoogle Scholar
  90. 90.
    Kawauchi J, Zhang C, Nobori K, Hashimoto Y, Adachi MT, Noda A et al (2002) Transcriptional repressor activating transcription factor 3 protects human umbilical vein endothelial cells from tumor necrosis factor-α-induced apoptosis through down-regulation of p53 transcription. J Biol Chem 277:39025–39034PubMedCrossRefGoogle Scholar
  91. 91.
    Nawa T, Nawa MT, Adachi MT, Uchimura I, Schimokawa R, Fujisawa K et al (2002) Expression of transcriptional repressor ATF3/LRF1 in human atherosclerosis: colocalization and possible involvement in the cell death of vascular endothelial cells. Atherosclerosis 161:281–291PubMedCrossRefGoogle Scholar
  92. 92.
    Inoue K, Zama T, Kamimoto T, Aoki R, Ikeda Y, Kimura H et al (2004) TNFα-induced ATF3 expression is bidirectionally regulated by the JNK and ERK pathways in vascular endothelial cells. Genes Cells 9:59–70PubMedCrossRefGoogle Scholar
  93. 93.
    Mahadevan LC, Edwards DR (1991) Signaling and superinduction. Nature 349:747–748PubMedCrossRefGoogle Scholar
  94. 94.
    Kyriakis JM, Banerjee P, Nikolakaki E, Dai T, Rubie EA, Ahmed MF et al (1994) The stress-activated protein kinase subfamily of c-Jun kinases. Nature 369:156–160PubMedCrossRefGoogle Scholar
  95. 95.
    Wolfgang CD, Liang G, Okamoto Y, Allen AE, Hai T (2000) Transcriptional autorepression of the stress-inducible gene ATF3. J Biol Chem 275(22):16865–16870PubMedCrossRefGoogle Scholar
  96. 96.
    Cressman DE, Greenbaum LE, deAngelis RA, Cilibarto G, Furth EE, Poli V et al (1996) Liver failure and defective hepatocyte regeneration in interleukin-6-deficient mice. Science 274:1379–1383PubMedCrossRefGoogle Scholar
  97. 97.
    Zhang C, Gao C, Kawauchi J, Hashimoto Y, Tsuchida N, Kitajima S (2002) Transcriptional activation of the human stress-inducible transcriptional repressor ATF3 gene promoter by p53. Biochem Biophys Res Comm 297:1302–1310PubMedCrossRefGoogle Scholar
  98. 98.
    Hai T, Liu F, Coukos WJ, Green MR (1989) Transcription factor ATF cDNA clones: an extensive family of leucine zipper proteins able to selectively form DNA-binding heterodimers. Genes Dev 3:2083–2090PubMedCrossRefGoogle Scholar
  99. 99.
    Hai T, Curran T (1991) Cross-family dimerization of transcription factors Fos/Jun and ATF/CREB alters DNA binding specificity. Proc Natl Acad Sci USA 88:3720–3724PubMedCrossRefGoogle Scholar
  100. 100.
    Hsu JC, Bravo R, Taub R (1992) Interactions among LRF-1, JunB, c-Jun and c-Fos define a regulatory program in the G1 phase of liver regeneration. Mol Cell Biol 12:4654–4665PubMedGoogle Scholar
  101. 101.
    Chu HM, Tan Y, Kobierski LA, Balsam LB, Comb MJ (1994) Activating transcription factor-3 stimulates 3′, 5′-cyclic adenosine monophosphate-dependent gene expression. Mol Endocrinol 8:59–68PubMedCrossRefGoogle Scholar
  102. 102.
    Fawcett TW, Martindale JL, Guyton KZ, Hai T, Holbrook NJ (1999) Complexes containing activating transcription factor (ATF)/cAMP-responsive-element-binding protein (CREB) interact with the CCAAT-enhancer-binding protein (C/EBP)-ATF composite site to regulate Gadd153 expression during the stress response. Biochem J 339:135–141PubMedCrossRefGoogle Scholar
  103. 103.
    Chen BPC, Wolfgang CD, Hai T (1996) Analysis of ATF3, a transcription factor induced by physiological stresses and modulated by gadd153/Chop10. Mol Cell Biol 16(3):1157–1168PubMedGoogle Scholar
  104. 104.
    Wolfgang CD, Chen BPC, Martindale JL, Holbrook NJ, Hai T (1997) Gadd153/Chop10, a potential target gene of the transcriptional repressor ATF3. Mol Cell Biol 17:6700–6707PubMedGoogle Scholar
  105. 105.
    Mashima T, Udagawa S, Tsuruo T (2001) Involvement of transcriptional repressor ATF3 in acceleration of caspase protease activation during DNA damaging agent-induced apoptosis. J Cell Physiol 188:352–358PubMedCrossRefGoogle Scholar
  106. 106.
    Nakagomi S, Suzuki Y, Namikawa K, Kiryu-Seo S, Kiyama H (2003) Expression of the activating transcription factor 3 prevents c-Jun N-terminal kinase-induced neuronal death by promoting heat shock protein 27 expression and Akt activation. J Neurosci 23(12):5187–5196PubMedGoogle Scholar
  107. 107.
    Pearson AG, Gary CW, Pearson JF, Greenwood JM, During MJ, Dragunow M (2003) ATF3 enhances c-Jun-mediated neurite sprouting. Mol Brain Res 120:38–45PubMedCrossRefGoogle Scholar
  108. 108.
    Vulg AS, Teuling E, Haasdijk ED, French P, Hoogenraad CC, Jaarsma D (2005) ATF3 expression precedes death of spinal motoneurons in amyotrophic lateral sclerosis-SOD1 transgenic mice and correlates with c-Jun phosphorylation, CHOP expression, somato-dendritic ubiquitination and Golgi fragmentation. Eur J Neurosci 22:1881–1894CrossRefGoogle Scholar
  109. 109.
    Seijffers R, Allchorne AJ, Woolf CJ (2006) The transcription factor ATF-3 promotes neurite outgrowth. Mol Cell Neurosci 32:143–154PubMedCrossRefGoogle Scholar
  110. 110.
    Tsujino H, Kondo E, Fukuoka T, Dai Y, Tokunaga A, Miki K et al (2000) Activating transcription factor 3 (ATF3) induction by axotomy in sensory and motoneurons: a novel neuronal marker of nerve injury. Mol Cell Neurosci 15:170–182PubMedCrossRefGoogle Scholar
  111. 111.
    McDonnell TJ, Beham A, Sarkiss M, Andersen MM, Lo P (1996) Importance of the Bcl-2 family in cell death regulation. Cell Mol Life Sci 52(10–11):1008–1017CrossRefGoogle Scholar
  112. 112.
    Tang L, Tron VA, Reed JC, Mah KJ, Krajewska M, Li G et al (1998) Expression of apoptosis regulators in cutaneous malignant melanoma. Clin Cancer Res 4:1865–1871PubMedGoogle Scholar
  113. 113.
    Pena JC, Thompson CB, Recant W, Vokes EE, Rudin CM (1999) Bcl-xL and Bcl-2 expression in squamous cell carcinoma of the head and neck. Cancer 85(1):164–170PubMedCrossRefGoogle Scholar
  114. 114.
    Nagy ZS, Esiri MM (1997) Apoptosis-related protein expression in the hippocampus in Alzheimer’s disease. Neurobiol Aging 18(6):565–571PubMedCrossRefGoogle Scholar
  115. 115.
    Kuan CY, Roth KA, Flavell RA, Rakic P (2000) Mechanisms of programmed cell death in the developing brain. Trends Neurosci 23:291–297PubMedCrossRefGoogle Scholar
  116. 116.
    Hopkins-Donaldson S, Cathomas R, Simoes-Wust AP, Kurtz S, Belyanskya L, Stahel RA et al (2003) Induction of apoptosis and chemosensitization of mesothelioma cells by Bcl-2 and Bcl-xL antisense treatment. Int J Cancer 106:160–166PubMedCrossRefGoogle Scholar
  117. 117.
    Rodemann HP, Blaese MA (2007) Responses of normal cells to ionizing radiation. Semin Radiat Oncol 17:81–88PubMedCrossRefGoogle Scholar
  118. 118.
    Levin LA, Schlamp CL, Spieldoch RL, Geszvain KM, Nickells RW (1997) Identification of the bcl-2 family of genes in the rat retina. Invest Ophthalmol Vis Sci 38(12):2545–2553PubMedGoogle Scholar
  119. 119.
    Drache B, Diehl GE, Beyreuther K, Perlmutter LS, Konig G (1997) Bcl-xl-specific antibody labels activated microglia associated with Alzheimer’s disease and other pathological states. J Neurosci Res 47:98–108PubMedCrossRefGoogle Scholar
  120. 120.
    Cunningham LL, Matsui JI, Warchol ME, Rubel EW (2004) Overexpression of Bcl-2 prevents neomycin-induced hair cell death and caspase-9 activation in the adult mouse utricle in vitro. J Neurobiol 60:89–100PubMedCrossRefGoogle Scholar
  121. 121.
    Martinon F, Tschopp J (2004) Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell 117:561–574PubMedCrossRefGoogle Scholar
  122. 122.
    Monack DM, Navarre WW, Falkow S (2001) Salmonella-induced macrophage death: the role of caspase-1 in death and inflammation. Microbes Infect 3:1201–1212Google Scholar
  123. 123.
    Siegmund B (2002) Interleukin-1β converting enzyme (caspase-1) in intestinal inflammation. Biochem Pharm 64:1–8PubMedCrossRefGoogle Scholar
  124. 124.
    Lamkanfi M, Declercq W, Saelens X, Vandenabeele P (2002) Alice in caspase land. A phylogenetic analysis of caspases from worm to man. Cell Death Differ 9:358–361PubMedCrossRefGoogle Scholar
  125. 125.
    Arai H, Furuya T, Yasuda T, Miura M, Mizuno Y, Mochizuki H (2004) Neurotoxic effects of lipopolysaccharide on nigral dopaminergic neurons are mediated by microglial activation, interleukin-1β, and expression of caspase-11 in mice. J Biol Chem 279:51637–51653CrossRefGoogle Scholar
  126. 126.
    Li J, Brieher WM, Scimone ML, Kang SJ, Zhu H, Yin H et al (2007) Caspase-11 regulates cell migration by promoting Aip1-Cofilin-mediated actin depolymerization. Nat Cell Biol 9(3):276–286PubMedCrossRefGoogle Scholar
  127. 127.
    Enari M, Talanian RV, Wong WW, Nagata S (1996) Sequential activation of ICE-like and CPP32-like proteases during Fas-mediated apoptosis. Nature 380:723–726PubMedCrossRefGoogle Scholar
  128. 128.
    Wang J, Ladrech S, Pujol R, Brabet P, Van De Water TR, Puel JL (2004) Caspase inhibitors, but not c-Jun NH2-terminal kinase inhibitor treatment, prevent cisplatin-induced hearing loss. Cancer Res 64:9217–9224PubMedCrossRefGoogle Scholar
  129. 129.
    Chan SL, Mattson MP (1999) Caspase and calpain substrates: roles in synaptic plasticity and cell death. J Neurosci Res 58:167–190PubMedCrossRefGoogle Scholar
  130. 130.
    Han Y, Weinman S, Boldogh I, Walker RK, Brasier AR (1999) Tumor necrosis factor-α-inducible IκBα proteolysis mediated by cytosolic m-calpain. J Biol Chem 274:787–794PubMedCrossRefGoogle Scholar
  131. 131.
    Porn-Ares MI, Samali A, Orrenius S (1998) Cleavage of the calpain inhibitor, calpastatin, during apoptosis. Cell Death Differ 5:1028–1033PubMedCrossRefGoogle Scholar
  132. 132.
    Jiang H, Sha SH, Forge A, Schacht J (2006) Caspase-independent pathways of hair cell death induced by kanamycin in vivo. Cell Death Differ 13:20–30PubMedCrossRefGoogle Scholar
  133. 133.
    Lee CK, Weindruch R, Prolla TA (2000) Gene-expression profile of the ageing brain in mice. Nat Genet 25:294–297PubMedCrossRefGoogle Scholar
  134. 134.
    Jiang CH, Tsien JZ, Schultz PG, Yinghe H (2001) The effects of aging on gene expression in the hypothalamus and cortex of mice. Proc Natl Acad Sci USA 98:1930–1934PubMedCrossRefGoogle Scholar
  135. 135.
    Yoshida S, Yashar BM, Hiriyanna S, Swaroop A (2002) Microarray analysis of gene expression in the aging human retina. Invest Ophthalmol Vis Sci 43:2554–2560PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Sherif F. Tadros
    • 1
  • Mary D’Souza
    • 2
    • 3
  • Xiaoxia Zhu
    • 2
    • 3
  • Robert D. Frisina
    • 2
    • 3
    Email author
  1. 1.Department of Physiology, School of Medical Sciences, Faculty of MedicineUniversity of New South WalesSydneyAustralia
  2. 2.International Center for Hearing & Speech Research, National Technical Institute for the DeafRochester Institute of TechnologyRochesterUSA
  3. 3.Department of OtolaryngologyUniversity of Rochester School of Medicine & DentistryRochesterUSA

Personalised recommendations