Skip to main content

Advertisement

Log in

Apoptotic resistance exhibited by dexamethasone-resistant murine 7TD1 cells is controlled independently of interleukin-6 triggered signaling

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Interleukin-6 (IL6)-mediated signaling is known to play a role in pathogenesis and resistance in several cancers like multiple myeloma (MM). In this report we used the IL6-dependent 7TD1 murine B-cell hybridoma as an in vitro model to study the interactions between IL6-signaling pathways and the development of dexamethasone resistance. Though in initial stages, 7TD1 cells grew IL6-dependent and were sensitive to dexamethasone-induced apoptosis, chronic exposure to dexamethasone led to a dexamethasone-resistant phenotype (7TD1-Dxm) that grew independent of exogenous IL6. While IL6-mediated JAK/STAT3 and PI3K/AKT signaling was important for proliferation of both cell lines, as shown in proliferation assays using the respective pathway inhibitors, AG490 and LY294002, the resistant cells were insensitive to induction of apoptosis using the same. STAT3 was constitutively phosphorylated in resistant cells and inhibition of its dimerization induced apoptosis but did not alter their insensitivity to dexamethasone. Our results suggest a role of entities downstream of IL6-mediated JAK/STAT3 signaling in development of dexamethasone resistance by 7TD1-Dxm cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Klein B, Zhang XG, Lu ZH, Bataille R (1995) Interleukin-6 in human multiple myeloma. Blood 85:863–872

    PubMed  CAS  Google Scholar 

  2. De Raeve HR, Vanderkerken K (2005) The role of the bone marrow microenvironment in multiple myeloma. Histol Histopathol 20:1227–1250

    PubMed  Google Scholar 

  3. Gado K, Domjan G, Hegyesi H, Falus A (2000) Role of interleukin-6 in the pathogenesis of multiple myeloma. Cell Biol Int 4:195–209. doi:10.1006/cbir.2000.0497

    Article  CAS  Google Scholar 

  4. Hallek M, Bergsagel L, Anderson KC (1998) Multiple myeloma: increasing evidence for a multistep transformation process. Blood 91:3–21

    PubMed  CAS  Google Scholar 

  5. Chatterjee M, Honemann D, Lentzsch S, Bommert K, Sers C, Herrmann P et al (2002) In the presence of bone marrow stromal cells human multiple myeloma cells become independent of the IL-6/gp130/STAT3 pathway. Blood 100:3311–3318. doi:10.1182/blood-2002-01-0102

    Article  PubMed  CAS  Google Scholar 

  6. Frassanito M, Cusmai A, Iodice G, Dammacco F (2001) Autocrine inteleukin-6 production and highly malignant multiple myeloma: relation with resistance to drug-induced apoptosis. Blood 97:483–489. doi:10.1182/blood.V97.2.483

    Article  PubMed  CAS  Google Scholar 

  7. Chauhan D, Pandey P, Hideshima T et al (2000) SHP2 mediates the protective effect of interleukin-6 against dexamethasone-induced apoptosis in multiple myeloma cells. J Biol Chem 275:27845–27850

    PubMed  CAS  Google Scholar 

  8. Song L, Li Y, Sun YX, Yu M, Shen BF (2002) IL-6 inhibits apoptosis of human myeloma cell line XG-7 through activation of JAK/STAT pathway and up-regulation of Mcl-1. Ai Zheng 21:113–116

    PubMed  Google Scholar 

  9. Hardin J, MacLeod S, Grigorieva I et al (1994) Interleukin-6 prevents dexamethasone-induced myeloma cell death. Blood 84:3063–3070

    PubMed  CAS  Google Scholar 

  10. Greenstein S, Krett NL, Kurosawa Y, Ma C, Chauhan D, Hideshima T et al (2003) Characterization of the MM.1 human multiple myeloma (MM) cell lines: a model system to elucidate the characteristics, behavior, and signaling of steroid-sensitive and -resistant MM cells. Exp Hematol 31:271–282. doi:10.1016/S0301-472X(03)00023-7

    Article  PubMed  CAS  Google Scholar 

  11. Bruno B, Giaccone L, Rotta M, Anderson KC, Boccadoro M (2005) Novel targeted drugs for the treatment of multiple myeloma: from bench to bedside. Leukemia 19:1729–1738. doi:10.1038/sj.leu.2403905

    Article  PubMed  CAS  Google Scholar 

  12. Bruno B, Rotta M, Giaccone L, Massaia M, Bertola A, Palumbo A et al (2004) New drugs for treatment of multiple myeloma. Lancet Oncol 5:430–442. doi:10.1016/S1470-2045(04)01511-6

    Article  PubMed  CAS  Google Scholar 

  13. Hideshima T, Chauhan D, Richardson P, Anderson KC (2005) Identification and validation of novel therapeutic targets for multiple myeloma. J Clin Oncol 23:6345–6350. doi:10.1200/JCO.2005.05.024

    Article  PubMed  CAS  Google Scholar 

  14. Portier M, Zhang XG, Ursule E, Lees D, Jourdan M, Bataille R et al (1993) Cytokine gene expression in human multiple myeloma. Br J Haematol 85:514–520

    Article  PubMed  CAS  Google Scholar 

  15. Kawano M, Hirano T, Matsuda T et al (1998) Autocrine generation and requirement of BSF-2/IL-6 for human multiple myelomas. Nature 332:83–85. doi:10.1038/332083a0

    Article  Google Scholar 

  16. Hata HK (1996) Interleukin6 gene expression is preferentially restricted in VLA-5 MPC-1 immature but not VLA-5+ MPC-1+ mature myeloma cells. Int J Hematol 63:215–226. doi:10.1016/0925-5710(96)00439-2

    Article  Google Scholar 

  17. Taga T, Kawanishi Y, Hardy RR, Hirano T, Kishimoto T (1987) Receptors for B cell stimulatory factor 2. Quantitation, specificity, distribution and regulation of their expression. J Exp Med 166:967–981. doi:10.1084/jem.166.4.967

    Article  PubMed  CAS  Google Scholar 

  18. Bauer J, Bauer TM, Kalb T, Taga T, Lengyel G, Hirano T et al (1989) Regulation of interleukin 6 receptor expression in human monocytes and monocyte-derived macrophages. Comparison with the expression in human hepatocytes. J Exp Med 170:1537–1549. doi:10.1084/jem.170.5.1537

    Article  PubMed  CAS  Google Scholar 

  19. Bauer J, Lengyel G, Bauer TM, Acs G, Gerok W (1989) Regulation of interleukin-6 receptor expression in human monocytes and hepatocytes. FEBS Lett 249:27–30. doi:10.1016/0014-5793(89)80008-0

    Article  PubMed  CAS  Google Scholar 

  20. Saito M, Yoshida K, Hibi M, Taga T, Kishimoto T (1992) Molecular cloning of a murine IL-6 receptor-associated signal transducer, gp130, and its regulated expression in vivo. J Immunol 148:4066–4071

    PubMed  CAS  Google Scholar 

  21. Hibi M, Murakami M, Saito M, Hirano T, Taga T, Kishimoto T (1990) Molecular cloning and expression of an IL-6 signal transducer, gp130. Cell 63:1149–1157. doi:10.1016/0092-8674(90)90411-7

    Article  PubMed  CAS  Google Scholar 

  22. Yamasaki K, Taga T, Hirata Y, Yawata H, Kawanishi Y, Seed B et al (1988) Cloning and expression of the human interleukin-6 (BSF-2/IFN beta 2) receptor. Science 241:825–828. doi:10.1126/science.3136546

    Article  PubMed  CAS  Google Scholar 

  23. Boulanger MJ, Chow DC, Brevnova EE, Garcia KC (2003) Hexameric structure and assembly of the interleukin-6/IL-6 alpha-receptor/gp130 complex. Science 300:2101–2104. doi:10.1126/science.1083901

    Article  PubMed  CAS  Google Scholar 

  24. Heinrich PC, Behrmann I, Haan S, Hermanns HM, Muller-Newen G, Schaper F (2003) Principles of interleukin (IL)-6-type cytokine signaling and its regulation. J Biochem 374:1–20. doi:10.1042/BJ20030407

    Article  CAS  Google Scholar 

  25. Ogata A, Chauhan D, Teoh G, Treon SP, Urashima M, Schlossman RL et al (1997) IL6 triggers cell growth via Ras-dependent MAPK cascade. J Immunol 159:2212–2221

    PubMed  CAS  Google Scholar 

  26. Lentzsch S, Chatterjee M, Gries M, Bommert K, Gollasch H, Dorken B et al (2004) PI3-K/AKT/FKHR and MAPK signaling cascades are redundantly stimulated by a variety of cytokines and contribute independently to proliferation and survival of multiple myeloma cells. Leukemia 18:1883–1890. doi:10.1038/sj.leu.2403486

    Article  PubMed  CAS  Google Scholar 

  27. Tu Y, Gardner A, Lichtenstein A (2000) The phosphatidylinositol 3-kinase/AKT kinase pathway in multiple myeloma plasma cells: roles in cytokine-dependent survival and proliferative responses. Cancer Res 60:6763–6770

    PubMed  CAS  Google Scholar 

  28. Wegenka UM, Lutticken C, Buschmann J, Yuan J, Lottspeich F, Muller-Esterl W et al (1994) The interleukin-6-activated acute-phase response factor is antigenically and functionally related to members of the signal transducer and activator of transcription (STAT) family. Mol Cell Biol 14:3186–3196

    PubMed  CAS  Google Scholar 

  29. Irvin B, Hanson C, Smith L, Daniels CK (2001) Cyclic Amp-IL6-sigaling cross talk: comodulation of proliferation and apoptosis in the 7TD1 B cell hybridoma. Exp Cell Res 265:73–79. doi:10.1006/excr.2001.5157

    Article  PubMed  CAS  Google Scholar 

  30. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63. doi:10.1016/0022-1759(83)90303-4

    Article  PubMed  CAS  Google Scholar 

  31. Turkson J, Ryan D, Kim JS, Zhang Y, Chen Z, Haura E (2001) Phosphoryltyrosyl peptides block Stat3-mediated DNA binding activity, gene regulation and cell transformation. J Biol Chem 276:45443–45455. doi:10.1074/jbc.M107527200

    Article  PubMed  CAS  Google Scholar 

  32. Catlett-Falcone R, Landowski TH, Oshiro MM, Turkson J, Levitzki A, Savino R et al (1999) Constitutive activation of STAT3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 10:105–115. doi:10.1016/S1074-7613(00)80011-4

    Article  PubMed  CAS  Google Scholar 

  33. Vos J, Jourdan M, Tarte K, Jasmin C, Klein B (2000) JAK2 tyrosine kinase inhibitor tyrphostin AG490 downregulates the mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription (STAT) pathways and induces apoptosis in myeloma cells. Br J Haematol 109:823–828. doi:10.1046/j.1365-2141.2000.02127.x

    Article  PubMed  Google Scholar 

  34. Zhang J, Li Y, Shen B (2003) PI3K/AKT pathway contributes to IL-6-dependent growth of 7TD1 cells. Cancer Cell Int 3:1–4. doi:10.1186/1475-2867-3-1

    Article  PubMed  Google Scholar 

  35. Hodge DR, Xiao W, Li HW, Li D, Farrar WL (2004) Activating mutations in STAT3 and STAT5 differentially affect cellular proliferation and apoptotic resistance in multiple myeloma cells. Cancer Biol Ther 3:188–194

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by NIH Grant P20RR16454 from the INBRE program of the National Center for Research Resources. We thank Ms. Sandi Pearce for expert technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher K. Daniels.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gangavarapu, K.J., Olbertz, J.L., Bhushan, A. et al. Apoptotic resistance exhibited by dexamethasone-resistant murine 7TD1 cells is controlled independently of interleukin-6 triggered signaling. Apoptosis 13, 1394–1400 (2008). https://doi.org/10.1007/s10495-008-0265-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-008-0265-y

Keywords

Navigation