Skip to main content
Log in

The association between plasma caspase-3, atherosclerosis, and vascular function in the Dallas Heart Study

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Background

Caspase-3, an apoptosis protease, is expressed in atherosclerotic plaques. We examined the relationship between plasma caspase-3 levels, aortic compliance, and atherosclerosis.

Methods

Caspase-3 was measured in 3,221 subjects from the Dallas Heart Study. Electron beam computed tomography measures of coronary calcium (CAC) (n = 2,404) and magnetic resonance imaging (MRI) measures of abdominal aortic wall thickness (AWT) (n = 2,208) and aortic compliance (AC) (n = 2,328) were obtained. Multivariate analyses were performed, adjusting for age, sex, ethnicity, body mass index (BMI), traditional cardiovascular risk factors, and cardiac medications.

Results

In univariable analysis, caspase-3 associated with CAC (P < 0.0001), AWT (P = 0.002), and AC (P < 0.0001). After multivariable adjustment, 4th quartile caspase-3 (compared to 1st quartile) was significantly associated with CAC (P = 0.004), AWT (P = 0.02), and AC (P < 0.0001) with similar findings for caspase-3 as a continuous variable.

Conclusions

Caspase-3 independently associates with CAC, AWT, and AC, suggesting a link between apoptosis and atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Viles-Gonzalez J, Fuster V, Badimon J (2006) Links between inflammation and thrombogenicity in atherosclerosis. Curr Mol Med 6:489–499. doi:10.2174/156652406778018707

    Article  PubMed  CAS  Google Scholar 

  2. Ait-Oufella H, Kinugawa K, Zoll J et al (2007) Lactadherin deficiency leads to apoptotic cell accumulation and accelerated atherosclerosis in mice. Circulation 115:2168–2177. doi:10.1161/CIRCULATIONAHA.106.662080

    Article  PubMed  CAS  Google Scholar 

  3. Akishima Y, Akasaka Y, Ishikawa Y et al (2005) Role of macrophage and smooth muscle cell apoptosis in association with oxidized low-density lipoprotein in the atherosclerotic development. Mod Pathol 18:365–373. doi:10.1038/modpathol.3800249

    Article  PubMed  CAS  Google Scholar 

  4. Bennett M (1999) Apoptosis of vascular smooth muscle cells in vascular remodelling and atherosclerotic plaque rupture. Cardiovasc Res 41:361–368. doi:10.1016/S0008-6363(98)00212-0

    Article  PubMed  CAS  Google Scholar 

  5. Bennett M, Evan G, Schwartz S (1995) Apoptosis of human vascular smooth muscle cells derived from normal vessels and coronary atherosclerotic plaques. J Clin Invest 95:2266–2274. doi:10.1172/JCI117917

    Article  PubMed  CAS  Google Scholar 

  6. Best P, Hasdai D, Sangiorgi G et al (1999) Apoptosis. Basic concepts and implications in coronary artery disease. Arterioscler Thromb Vasc Biol 19:14–22

    PubMed  CAS  Google Scholar 

  7. Dimmeler S, Hermann C, Zeiher A (1998) Apoptosis of endothelial cells. Contribution to the pathophysiology of atherosclerosis? Eur Cytokine Netw 9:697–698

    PubMed  CAS  Google Scholar 

  8. Norata G, Tonti L, Roma P, Catapano A (2002) Apoptosis and proliferation of endothelial cells in early atherosclerotic lesions: possible role of oxidised LDL. Nutr Metab Cardiovasc Dis 12:297–305

    PubMed  CAS  Google Scholar 

  9. Krajewska M, Wang H-G, Krajewski S et al (1997) Immunohistochemical analysis of in vivo patterns of expression of CPP32 (Caspase-3), a cell death protease. Cancer Res 57:1605–1613

    PubMed  CAS  Google Scholar 

  10. Chen F, Eriksson P, Kimura T, Herzfeld I, Valen G (2005) Apoptosis and angiogenesis are induced in the unstable coronary atherosclerotic plaque. Coron Artery Dis 16:191–197. doi:10.1097/00019501-200505000-00009

    Article  PubMed  Google Scholar 

  11. Littlewood T, Bennett M (2003) Apoptotic cell death in atherosclerosis. Curr Opin Lipidol 14:469–475. doi:10.1097/00041433-200310000-00007

    Article  PubMed  CAS  Google Scholar 

  12. Reeve JL, Duffy AM, O’Brien T, Samali A (2005) Don’t lose heart—therapeutic value of apoptosis prevention in the treatment of cardiovascular disease. J Cell Mol Med 9:609–622. doi:10.1111/j.1582-4934.2005.tb00492.x

    Article  PubMed  CAS  Google Scholar 

  13. Cryns V, Yuan J (1998) Proteases to die for. Genes Dev 12:1551–1570. Erratum appears in Genes Dev 13(3):371 (1999). doi:10.1101/gad.12.11.1551

    Google Scholar 

  14. Nhan T, Liles W, Chait A, Fallon J, Schwartz S (2003) The p17 cleaved form of caspase-3 is present within viable macrophages in vitro and in atherosclerotic plaque. Arterioscler Thromb Vasc Biol 23:1276–1282. doi:10.1161/01.ATV.0000078602.54433.07

    Article  PubMed  CAS  Google Scholar 

  15. Martin-Ventura J, Blanco-Colio L, Munoz-Garcia B et al (2004) NF-kappaB activation and Fas ligand overexpression in blood and plaques of patients with carotid atherosclerosis: potential implication in plaque instability. Stroke 35:458–463. doi:10.1161/01.STR.0000114876.51656.7A

    Article  PubMed  CAS  Google Scholar 

  16. Prunet C, Petit J, Ecarnot-Laubriet A et al (2006) High circulating levels of 7beta- and 7alpha-hydroxycholesterol and presence of apoptotic and oxidative markers in arterial lesions of normocholesterolemic atherosclerotic patients undergoing endarterectomy. Pathol Biol (Paris) 54:22–32. doi:10.1016/j.patbio.2004.11.002

    CAS  Google Scholar 

  17. Victor R, Haley R, Willett D et al (2004) The Dallas Heart Study: a population-based probability sample for the multidisciplinary study of ethnic differences in cardiovascular health. Am J Cardiol 93:1473–1480. doi:10.1016/j.amjcard.2004.02.058

    Article  PubMed  Google Scholar 

  18. Jain T, Peshock R, McGuire D et al (2004) African Americans and Caucasians have a similar prevalence of coronary calcium in the Dallas Heart Study. J Am Coll Cardiol 44:1011–1017. doi:10.1016/j.jacc.2004.05.069

    Article  PubMed  CAS  Google Scholar 

  19. Drazner M, Dries D, Peshock R et al (2005) Left ventricular hypertrophy is more prevalent in blacks than whites in the general population: the Dallas Heart Study. Hypertension 46:124–129; See comment. doi:10.1161/01.HYP.0000169972.96201.8e

    Article  PubMed  CAS  Google Scholar 

  20. Rivers E, Kruse J, Jacobsen G et al (2007) The influence of early hemodynamic optimization on biomarker patterns of severe sepsis and septic shock. Crit Care Med 35:2016–2024; See comment. doi:10.1097/01.CCM.0000281637.08984.6E

    Article  PubMed  Google Scholar 

  21. Khera A, McGuire D, Murphy S et al (2005) Race and gender differences in C-reactive protein levels. J Am Coll Cardiol 46:464–469. doi:10.1016/j.jacc.2005.04.051

    Article  PubMed  CAS  Google Scholar 

  22. Abdullah S, Khera A, Das S et al (2005) Relation of coronary atherosclerosis determined by electron beam computed tomography and plasma levels of N-terminal pro-brain natriuretic peptide in a multiethnic population-based sample (the Dallas Heart Study). Am J Cardiol 96:1284–1289. doi:10.1016/j.amjcard.2005.06.073

    Article  PubMed  CAS  Google Scholar 

  23. de Lemos JA, Morrow DA, Bentley JH et al (2001) The prognostic value of B-type natriuretic peptide in patients with acute coronary syndromes. N Engl J Med 345:1014–1021. doi:10.1056/NEJMoa011053

    Article  PubMed  Google Scholar 

  24. Deo R, Khera A, McGuire D et al (2004) Association among plasma levels of monocyte chemoattractant protein-1, traditional cardiovascular risk factors, and subclinical atherosclerosis. J Am Coll Cardiol 44:1812–1818; Comment. doi:10.1016/j.jacc.2004.07.047

    Article  PubMed  CAS  Google Scholar 

  25. Abedin M, Omland T, Ueland T et al (2007) Relation of osteoprotegerin to coronary calcium and aortic plaque (from the Dallas Heart Study). Am J Cardiol 99:513–518. doi:10.1016/j.amjcard.2006.08.064

    Article  PubMed  CAS  Google Scholar 

  26. Wallace T, Abdullah S, Drazner M et al (2006) Prevalence and determinants of troponin T elevation in the general population. Circulation 113:1958–1965. doi:10.1161/CIRCULATIONAHA.105.609974

    Article  PubMed  CAS  Google Scholar 

  27. Guerra R, Yu Z, Marcovina S, Peshock R, Cohen J, Hobbs H (2005) Lipoprotein(a) and apolipoprotein(a) isoforms: no association with coronary artery calcification in the Dallas Heart Study. Circulation 111:1471–1479. doi:10.1161/01.CIR.0000159263.50305.BD

    Article  PubMed  CAS  Google Scholar 

  28. de Lemos J, Zirlik A, Schonbeck U et al (2005) Associations between soluble CD40 ligand, atherosclerosis risk factors, and subclinical atherosclerosis: results from the Dallas Heart Study. Arterioscler Thromb Vasc Biol 25:2192–2196. doi:10.1161/01.ATV.0000182904.08513.60

    Article  PubMed  Google Scholar 

  29. Abedin M, Omland T, Ueland T et al (2007) Relation of osteoprotegerin to coronary calcium and aortic plaque (from the Dallas Heart Study). Am J Cardiol 99:513–518; See comment. doi:10.1016/j.amjcard.2006.08.064

    Article  PubMed  CAS  Google Scholar 

  30. Heeschen C, Dimmeler S, Hamm C et al (2003) Soluble CD40 ligand in acute coronary syndromes. N Engl J Med 348:1104–1111. doi:10.1056/NEJMoa022600

    Article  PubMed  CAS  Google Scholar 

  31. Ridker P, Rifai N, Rose L, Buring J, Cook N (2002) Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med 347:1557–1565; See comment. doi:10.1056/NEJMoa021993

    Article  PubMed  CAS  Google Scholar 

  32. Hebert M, Masse M, Vigneault N, Sirois I, Troyanov S, Madore F (2001) Soluble Fas is a marker of coronary artery disease in patients with end-stage renal disease. Am J Kidney Dis 38:1271–1276. doi:10.1053/ajkd.2001.29224

    Article  PubMed  CAS  Google Scholar 

  33. Masse M, Hebert M, Troyanov S, Vigneault N, Sirois I, Madore F (2002) Soluble Fas is a marker of peripheral arterial occlusive disease in haemodialysis patients. Nephrol Dial Transplant 17:485–491. doi:10.1093/ndt/17.3.485

    Article  PubMed  CAS  Google Scholar 

  34. Troyanov S, Hebert M, Masse M, Vigneault N, Sirois I, Madore F (2003) Soluble Fas: a novel predictor of atherosclerosis in dialysis patients. Am J Kidney Dis 41:1043–1051. doi:10.1016/S0272-6386(03)00202-6

    Article  PubMed  Google Scholar 

  35. Okura T, Watanabe S, Jiang Y et al (2002) Soluble Fas ligand and atherosclerosis in hypertensive patients. J Hypertens 20:895–898; See comment. doi:10.1097/00004872-200205000-00024

    Article  PubMed  CAS  Google Scholar 

  36. van der Meer I, Oei H, Hofman A, Pols H, de Jong F, Witteman J (2006) Soluble Fas, a mediator of apoptosis, C-reactive protein, and coronary and extracoronary atherosclerosis. The Rotterdam Coronary Calcification Study. Atherosclerosis 189:464–469. doi:10.1016/j.atherosclerosis.2006.01.004

    Article  PubMed  Google Scholar 

  37. Boyle J, Weissberg P, Bennett M (2003) Tumor necrosis factor-alpha promotes macrophage-induced vascular smooth muscle cell apoptosis by direct and autocrine mechanisms. Arterioscler Thromb Vasc Biol 23:1553–1558. doi:10.1161/01.ATV.0000086961.44581.B7

    Article  PubMed  CAS  Google Scholar 

  38. Tintut Y, Patel J, Parhami F, Demer LL (2000) Tumor necrosis factor-α promotes in vitro calcification of vascular cells via the cAMP pathway. Circulation 102:2636–2642

    PubMed  CAS  Google Scholar 

  39. Reilly M, Rohatgi A, McMahon K et al (2007) Plasma cytokines, metabolic syndrome, and atherosclerosis in humans. J Investig Med 55:26–35. doi:10.2310/6650.2007.06013

    Article  PubMed  CAS  Google Scholar 

  40. Hong MK, Vossoughi J, Mintz GS et al (1997) Altered compliance and residual strain precede angiographically detectable early atherosclerosis in low-density lipoprotein receptor deficiency. Arterioscler Thromb Vasc Biol 17:2209–2217

    PubMed  CAS  Google Scholar 

  41. Dalessandri KM, Bogren H, Lantz BM, Tsukamoto H, Bjorkerud S, Brock J (1990) Aortic compliance in hypercholesterolemic Watanabe rabbits compared to normal New Zealand controls. J Invest Surg 3:245–251. doi:10.3109/08941939009140354

    Article  PubMed  CAS  Google Scholar 

  42. Farrar DJ, Bond MG, Riley WA, Sawyer JK (1991) Anatomic correlates of aortic pulse wave velocity and carotid artery elasticity during atherosclerosis progression and regression in monkeys. Circulation 83:1754–1763

    PubMed  CAS  Google Scholar 

  43. Franklin SS, Khan SA, Wong ND, Larson MG, Levy D (1999) Is pulse pressure useful in predicting risk for coronary heart Disease? The Framingham Heart Study. Circulation 100:354–360

    PubMed  CAS  Google Scholar 

  44. Lehmann ED, Hopkins KD, Gosling RG (1993) Aortic compliance measurements using Doppler ultrasound: in vivo biochemical correlates. Ultrasound Med Biol 19:683–710. doi:10.1016/0301-5629(93)90087-5

    Article  PubMed  CAS  Google Scholar 

  45. Nigam A, Mitchell GF, Lambert J, Tardif JC (2003) Relation between conduit vessel stiffness (assessed by tonometry) and endothelial function (assessed by flow-mediated dilatation) in patients with and without coronary heart disease. Am J Cardiol 92:395–399. doi:10.1016/S0002-9149(03)00656-8

    Article  PubMed  Google Scholar 

  46. Budoff MJ, Shaw LJ, Liu ST et al (2007) Long-term prognosis associated with coronary calcification: observations from a registry of 25, 253 patients. J Am Coll Cardiol 49:1860–1870; See comment. doi:10.1016/j.jacc.2006.10.079

    Article  PubMed  Google Scholar 

  47. Trion A, van der Laarse A (2004) Vascular smooth muscle cells and calcification in atherosclerosis. Am Heart J 147:808–814. doi:10.1016/j.ahj.2003.10.047

    Article  PubMed  CAS  Google Scholar 

  48. Proudfoot D, Skepper J, Hegyi L, Bennett M, Shanahan C, Weissberg P (2000) Apoptosis regulates human vascular calcification in vitro: evidence for initiation of vascular calcification by apoptotic bodies. Circ Res 87:1055–1062

    PubMed  CAS  Google Scholar 

  49. Clarke M, Littlewood T, Figg N et al (2008) Chronic apoptosis of vascular smooth muscle cells accelerates atherosclerosis and promotes calcification and medial degeneration. Circ Res 102:1529–1538. doi:10.1161/CIRCRESAHA.108.175976

    Article  PubMed  CAS  Google Scholar 

  50. Kockx MM, De Meyer GRY, Muhring J, Jacob W, Bult H, Herman AG (1998) Apoptosis and related proteins in different stages of human atherosclerotic plaques. Circulation 97:2307–2315

    PubMed  CAS  Google Scholar 

  51. Samali A, Zhivotovsky B, Jones DP, Orrenius S (1998) Detection of pro-caspase-3 in cytosol and mitochondria of various tissues. FEBS Lett 431:167–169. doi:10.1016/S0014-5793(98)00740-6

    Article  PubMed  CAS  Google Scholar 

  52. Balsam L, Mokhtari G, Jones S et al (2005) Early inhibition of caspase-3 activity lessens the development of graft coronary artery disease. J Heart Lung Transplant 24:827–832. doi:10.1016/j.healun.2004.05.015

    Article  PubMed  Google Scholar 

  53. Sarai M, Hartung D, Petrov A et al (2007) Broad and specific caspase inhibitor-induced acute repression of apoptosis in atherosclerotic lesions evaluated by radiolabeled annexin A5 imaging. J Am Coll Cardiol 50:2305–2312. doi:10.1016/j.jacc.2007.08.044

    Article  PubMed  CAS  Google Scholar 

  54. Viles-Gonzalez J, Fuster V, Corti R et al (2005) Atherosclerosis regression and TP receptor inhibition: effect of S18886 on plaque size and composition—a magnetic resonance imaging study. Eur Heart J 26:1557–1561. doi:10.1093/eurheartj/ehi175

    Article  PubMed  CAS  Google Scholar 

  55. Hartung D, Sarai M, Petrov A et al (2005) Resolution of apoptosis in atherosclerotic plaque by dietary modification and statin therapy. J Nucl Med 46:2051–2056

    PubMed  CAS  Google Scholar 

  56. Moran E, Agrawal D (2007) Increased expression of inhibitor of apoptosis proteins in atherosclerotic plaques of symptomatic patients with carotid stenosis. Exp Mol Pathol 83:11–16. doi:10.1016/j.yexmp.2006.09.006

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Dr. de Lemos receives both grant support from and is a consultant for Biosite/Inverness (San Diego, CA). The other authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. de Lemos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matulevicius, S., Rohatgi, A., Khera, A. et al. The association between plasma caspase-3, atherosclerosis, and vascular function in the Dallas Heart Study. Apoptosis 13, 1281–1289 (2008). https://doi.org/10.1007/s10495-008-0254-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-008-0254-1

Keywords

Navigation