Skip to main content
Log in

Changes in FADD levels, distribution, and phosphorylation in TNFα-induced apoptosis in hepatocytes is caspase-3, caspase-8 and BID dependent

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

FADD/MORT1 (The adaptor protein of Fas Associate Death Domain/Mediator of Receptor Induced Toxicity) is essential for signal transduction of death receptor signaling. We have previously shown that FADD is significantly up-regulated in TNFα/ActD induced apoptosis. Over-expression of FADD also induces death of lung cancer cells and primary hepatocytes. We hypothesize that the increase in detectable FADD levels require the proximal steps in apoptotic signaling and speculated that FADD would be redistributed in cells destined to undergo apoptosis. We show that monomeric non-phosphorylated FADD is up-regulated in hepatocytes treated with TNFα/ActD and that it accumulates in the cytoplasm. Nuclear phosphorylated FADD decreases with TNFα/ActD treatment. Dimeric FADD in the cytoplasm remains constant with TNFα/ActD. The change in FADD levels and distribution was dependent on caspase-3, caspase-8 activity and the presence of BID. Thus, changes in FADD levels and distribution are downstream of caspase activation and mitochondria changes that are initiated by the formation of the DISC complex. Changes in FADD levels and distribution may represent a novel feed-forward mechanism to propagate apoptosis signaling in hepatocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Reference

  1. Patel T (2000) Apoptosis in hepatic pathophysiology. Clin Liver Dis 4:295–317. doi:10.1016/S1089-3261(05)70112-4

    Article  PubMed  CAS  Google Scholar 

  2. Schattenberg JM, Galle PR, Schuchmann M (2006) Apoptosis in liver disease. Liver Int 26:904–911. doi:10.1111/j.1478-3231.2006.01324.x

    Article  PubMed  CAS  Google Scholar 

  3. Schneider-Brachert W, Tchikov V, Neumeyer J, Jakob M et al (2004) Compartmentalization of TNF receptor 1 signaling: internalized TNF receptosomes as death signaling vesicles. Immunity 21:415–428

    Article  PubMed  CAS  Google Scholar 

  4. Jones BE, Lo CR, Liu H et al (2000) Hepatocytes sensitized to tumor necrosis factor-alpha cytotoxicity undergo apoptosis through caspase-dependent and caspase-independent pathways. J Biol Chem 275:705–712. doi:10.1074/jbc.275.1.705

    Article  PubMed  CAS  Google Scholar 

  5. Chinnaiyan AM, O’Rourke K, Tewari M, Dixit VM (1995) FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81:505–512. doi:10.1016/0092-8674(95)90071-3

    Article  PubMed  CAS  Google Scholar 

  6. Boldin MP, Varfolomeev EE, Pancer Z, Mett IL, Camonis JH, Wallach D (1995) A novel protein that interacts with the death domain of Fas/APO1 contains a sequence motif related to the death domain. J Biol Chem 270:7795–7798. doi:10.1074/jbc.270.14.7795

    Article  PubMed  CAS  Google Scholar 

  7. Kim PK, Wang Y, Gambotto A et al (2002) Hepatocyte Fas-associating death domain protein/mediator of receptor-induced toxicity (FADD/MORT1) levels increase in response to pro-apoptotic stimuli. J Biol Chem 277:38855–38862. doi:10.1074/jbc.M203484200

    Article  PubMed  CAS  Google Scholar 

  8. Wang Y, Kim PK, Peng X et al (2006) Cyclic AMP and cyclic GMP suppress TNFalpha-induced hepatocyte apoptosis by inhibiting FADD up-regulation via a protein kinase A-dependent pathway. Apoptosis 11:441–451. doi:10.1007/s10495-005-4293-6

    Article  PubMed  CAS  Google Scholar 

  9. Scaffidi C, Volkland J, Blomberg I, Hoffmann I, Krammer PH, Peter ME (2000) Phosphorylation of FADD/ MORT1 at serine 194 and association with a 70-kDa cell cycle-regulated protein kinase. J Immunol 164:1236–1242

    PubMed  CAS  Google Scholar 

  10. Screaton RA, Kiessling S, Sansom OJ et al (2003) Fas-associated death domain protein interacts with methyl-CpG binding domain protein 4: a potential link between genome surveillance and apoptosis. Proc Natl Acad Sci USA 100:5211–5216. doi:10.1073/pnas.0431215100

    Article  PubMed  CAS  Google Scholar 

  11. Eberstadt M, Huang B, Chen Z et al (1998) NMR structure and mutagenesis of the FADD (Mort1) death-effector domain. Nature 392:941–945. doi:10.1038/31972

    Article  PubMed  CAS  Google Scholar 

  12. Fan L, Freeman KW, Khan T, Pham E, Spencer DM (1999) Improved artificial death switches based on caspases and FADD. Hum Gene Ther 10:2273–2285. doi:10.1089/10430349950016924

    Article  PubMed  CAS  Google Scholar 

  13. Muppidi JR, Lobito AA, Ramaswamy M et al (2006) Homotypic FADD interactions through a conserved RXDLL motif are required for death receptor-induced apoptosis. Cell Death Differ 13:1641–1650. doi:10.1038/sj.cdd.4401855

    Article  PubMed  CAS  Google Scholar 

  14. Sandu C, Morisawa G, Wegorzewska I, Huang T, Arechiga AF, Hill JM et al (2006) FADD self-association is required for stable interaction with an activated death receptor. Cell Death Differ 13:2052–2061. doi:10.1038/sj.cdd.4401966

    Article  PubMed  CAS  Google Scholar 

  15. Sheikh MS, Huang Y (2003) The FADD is going nuclear. Cell Cycle 2:346–347

    PubMed  CAS  Google Scholar 

  16. Scaffidi C, Volkland J, Blomberg I, Hoffmann I, Krammer PH, Peter ME (2000) Phosphorylation of FADD/ MORT1 at serine 194 and association with a 70-kDa cell cycle-regulated protein kinase. J Immunol 164:1236–1242

    PubMed  CAS  Google Scholar 

  17. Siegel RM, Martin DA, Zheng L et al (1998) Death-effector filaments: novel cytoplasmic structures that recruit caspases and trigger apoptosis. J Cell Biol 141:1243–1253. doi:10.1083/jcb.141.5.1243

    Article  PubMed  CAS  Google Scholar 

  18. Li S, Zhao Y, He X et al (2002) Relief of extrinsic pathway inhibition by the Bid-dependent mitochondrial release of Smac in Fas-mediated hepatocyte apoptosis. J Biol Chem 277:26912–26920. doi:10.1074/jbc.M200726200

    Article  PubMed  CAS  Google Scholar 

  19. Sprott SC, Hammond KD, Savage N (1991) Subcellular fractionation of murine erythroleukemic cells: distribution of protein kinases. Anal Biochem 194:407–412. doi:10.1016/0003-2697(91)90249-S

    Google Scholar 

  20. Cho HJ, Martin E, Xie QW, Sassa S, Nathan C (1995) Inducible nitric oxide synthase: identification of amino acid residues essential for dimerization and binding of tetrahydrobiopterin. Proc Natl Acad Sci USA 92:11514–11518. doi:10.1073/pnas.92.25.11514

  21. Bhojani MS, Chen G, Ross BD, Beer DG, Rehemtulla A (2005) Nuclear localized phosphorylated FADD induces cell proliferation and is associated with aggressive lung cancer. Cell Cycle 4:1478–1481

    PubMed  CAS  Google Scholar 

  22. Chen G, Bhojani MS, Heaford AC et al (2005) Phosphorylated FADD induces NF-kappaB, perturbs cell cycle, and is associated with poor outcome in lung adenocarcinomas. Proc Natl Acad Sci USA 102:12507–12512. doi:10.1073/pnas.0500397102

    Article  PubMed  CAS  Google Scholar 

  23. Li J, Bombeck CA, Yang S, Kim YM, Billiar TR (1999) Nitric oxide suppresses apoptosis via interrupting caspase activation and mitochondrial dysfunction in cultured hepatocytes. J Biol Chem 274:17325–17333. doi:10.1074/jbc.274.24.17325

    Article  PubMed  CAS  Google Scholar 

  24. Guicciardi ME, Gores GJ (2004) Cheating death in the liver. Nat Med 10:587–588. doi:10.1038/nm0604-587

    Article  PubMed  CAS  Google Scholar 

  25. Boldin MP, Goncharov TM, Goltsev YV, Wallach D (1996) Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell 85:803–815. doi:10.1016/S0092-8674(00)81265-9

    Article  PubMed  CAS  Google Scholar 

  26. Muzio M, Chinnaiyan AM, Kischkel FC et al (1996) FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death–inducing signaling complex. Cell 85:817–827. doi:10.1016/S0092-8674(00)81266-0

    Article  PubMed  CAS  Google Scholar 

  27. Gomez-Angelats M, Cidlowski JA (2003) Molecular evidence for the nuclear localization of FADD. Cell Death Differ 10:791–797. doi:10.1038/sj.cdd.4401237

    Article  PubMed  CAS  Google Scholar 

  28. Carrington PE, Sandu C, Wei Y et al (2006) The structure of FADD and its mode of interaction with procaspase-8. Mol Cell 22:599–610. doi:10.1016/j.molcel.2006.04.018

    Article  PubMed  CAS  Google Scholar 

  29. Werneburg N, Guicciardi ME, Yin XM, Gores GJ (2004) TNF-alpha-mediated lysosomal permeabilization is FAN and caspase 8/Bid dependent. Am J Physiol Gastrointest Liver Physiol 287:G436–G443. doi:10.1152/ajpgi.00019.2004

    Article  PubMed  CAS  Google Scholar 

  30. Guicciardi ME, Deussing J, Miyoshi H et al (2000) Cathepsin B contributes to TNF-a–mediated hepatocyte apoptosis by promoting mitochondrial release of cytochrome c. J Clin Invest 106:1127–1137. doi:10.1172/JCI9914

    Article  PubMed  CAS  Google Scholar 

  31. Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ et al (1998) Two CD95 (APO-1/Fas) signaling pathways. EMBO J 17:1675–1687. doi:10.1093/emboj/17.6.1675

    Article  PubMed  CAS  Google Scholar 

  32. Scaffidi C, Schmitz I, Zha J, Korsmeyer SJ, Krammer PH, Peter ME (1999) Differential modulation of apoptosis sensitivity in CD95 type I and type II cells. J Biol Chem 274:22532–22538. doi:10.1074/jbc.274.32.22532

    Article  PubMed  CAS  Google Scholar 

  33. Bossy-Wetzel E, Green D (1999) Caspases induce cytochrome c release from mitochondria by activating cytosolic factors. J Biol Chem 274:17484–17490. doi:10.1074/jbc.274.25.17484

    Article  PubMed  CAS  Google Scholar 

  34. Ding WX, Ni HM, DiFrancesca D, Stolz DB, Yin XM (2004) Bid-dependent generation of oxygen radicals promotes death receptor activation-induced apoptosis in murine hepatocytes. Hepatology 40:403–413. doi:10.1002/hep.20310

    Article  PubMed  CAS  Google Scholar 

  35. Alappat EC, Volkland J, Peter ME (2003) Cell cycle effects by C-FADD depend on its C-terminal phosphorylation site. J Biol Chem 278:41585–41588. doi:10.1074/jbc.C300385200

    Article  PubMed  CAS  Google Scholar 

  36. Alappat EC, Feig C, Boyerinas B et al (2005) Phosphorylation of FADD at serine 194 by CKIalpha regulates its nonapoptotic activities. Mol Cell 19:321–332. doi:10.1016/j.molcel.2005.06.024

    Article  PubMed  CAS  Google Scholar 

  37. Hua ZC, Sohn SJ, Kang C, Cado D, Winoto A (2003) A function of Fas-associated death domain protein in cell cycle progression localized to a single amino acid at its C-terminal region. Immunity 18:513–521. doi:10.1016/S1074-7613(03)00083-9

    Article  PubMed  CAS  Google Scholar 

  38. Shimada K, Matsuyoshi S, Nakamura M, Ishida E, Kishi M, Konishi N (2004) Phosphorylation of FADD is critical for sensitivity to anticancer drug-induced apoptosis. Carcinogenesis 25:1089–1097. doi:10.1093/carcin/bgh130

    Article  PubMed  CAS  Google Scholar 

  39. Shimada K, Nakamura M, Ishida E, Kishi M, Yonehara S, Konishi N (2002) Phosphorylation of Fas-associated death domain contributes to enhancement of etoposide-induced apoptosis in prostate cancer cells. Jpn J Cancer Res 93:1164–1174

    PubMed  CAS  Google Scholar 

  40. Izeradjene K, Douglas L, Delaney AB, Houghton JA (2004) Casein kinase I attenuates tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by regulating the recruitment of fas-associated death domain and procaspase-8 to the death-inducing signaling complex. Cancer Res 64:8036–8044. doi:10.1158/0008-5472.CAN-04-0762

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy R. Billiar.

Additional information

Xiaoying Zhang and Raghuveer Vallabhaneni contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Vallabhaneni, R., Loughran, P.A. et al. Changes in FADD levels, distribution, and phosphorylation in TNFα-induced apoptosis in hepatocytes is caspase-3, caspase-8 and BID dependent. Apoptosis 13, 983–992 (2008). https://doi.org/10.1007/s10495-008-0228-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-008-0228-3

Keywords

Navigation