Skip to main content

Advertisement

Log in

Adenovirus-mediated PDCD5 gene transfer sensitizes K562 cells to apoptosis induced by idarubicin in vitro and in vivo

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

PDCD5 (programmed cell death 5) accelerates apoptosis of certain tumor cells and is expressed at low levels in marrow-nucleated cells of AML and CML patients. In the present study, we evaluated the effects of PDCD5 overexpression on drug sensitivity of leukemia cells. K562 cells were treated with idarubicin (IDR) alone or in combination with adenoviral vectors expressing PDCD5 (Ad-PDCD5). As shown by annexin-V-FITC/PI dual labeling, apoptosis rates were markedly increased after combined treatment with Ad-PDCD5 compared to IDR treatment alone. We observed that PDCD5 overexpression significantly improves the antitumor effects of low dose IDR treatment in vivo. Tumor sizes were significantly decreased in combined Ad-PDCD5 and low dose IDR treatment groups compared with single IDR treatment groups. Similar results were obtained with combined systemic treatment of Ad-PDCD5 and low dose IDR, and combined treatment with Ad-PDCD5 local injection and low dose IDR i.p. injection. These results indicate that Ad-PDCD5 may be a promising agent for enhancing chemosensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  PubMed  CAS  Google Scholar 

  2. Evan GI, Vousden KH (2001) Proliferation, cell cycle and apoptosis in cancer. Nature 411(6835):342–348

    Article  PubMed  CAS  Google Scholar 

  3. LaCasse EC, Baird S, Korneluk RG, MacKenzie AE (1998) The inhibitors of apoptosis (IAPs) and their emerging role in cancer. Oncogene 17(25):3247–3259

    Article  PubMed  Google Scholar 

  4. Miyake H, Hara I, Hara S, Arakawa S, Kamidono S (2000) Synergistic chemosensitization and inhibition of tumor growth and metastasis by adenovirus-mediated P53 gene transfer in human bladder cancer model. Urology 56(2):332–336

    Article  PubMed  CAS  Google Scholar 

  5. Tuve S, Racek T, Niemetz A, Schultz J, Soengas MS, Pützer BM (2006) Adenovirus-mediated TA-p73beta gene transfer increases chemosensitivity of human malignant melanomas. Apoptosis 11(2):235–243

    Article  PubMed  CAS  Google Scholar 

  6. Okumura K, Nakase M, Nakamura S, Kamei T, Inui M, Tagawa T (2007) Bax gene therapy for human osteosarcoma using cationic liposomes in vivo. Oncol Rep 17(4):769–773

    PubMed  CAS  Google Scholar 

  7. Liu H, Wang Y, Zhang Y, Song Q, Di C, Chen G et al (1999) TFAR19, a novel apoptosis-related gene cloned from human leukemia cell line TF-1, could enhance apoptosis of some tumor cells induced by growth factor withdrawal. Biochem Biophys Res Commun 254(1):203–210

    Article  PubMed  CAS  Google Scholar 

  8. Zhang YM, Xu XZ, Liu HT, Song QS, Ma DL (2000) The apoptosis-accelerating effect of human recombinant TFAR19 protein on leukemia HL-60 cells. J Chin Immunol 16:8–11

    Google Scholar 

  9. Ruan GR, Chen SS, Chang Y, Fu JY, Wan H, Qin YZ et al (2002) Abnormality expression of a novel apoptosis-promoting molecule TFAR19 (PDCD5) in the bone marrow cells from adult chronic myeloid leukemia. J Peking Univ (Health Sci) 34:676–679

    CAS  Google Scholar 

  10. Ruan GR, Qin YZ, Chen SS, Li JL, Ma X, Chang Y et al (2006) Abnormal expression of the programmed cell death 5 gene in acute and chronic myeloid leukemia. Leuk Res 30(9):1159–1165

    PubMed  CAS  Google Scholar 

  11. Wang Y, Li X, Wang L, Ding P, Zhang Y, Han W et al (2004) An alternative form of paraptosis-like cell death, triggered by TAJ/TROY and enhanced by PDCD5 overexpression. J Cell Sci 117(Pt 8):1525–1532

    Article  PubMed  CAS  Google Scholar 

  12. Chen Y, Douglass T, Jeffes EW, Xu Q, Williams CC, Arpajirakul N et al (2002) Living T9 glioma cells expressing membrane macrophage colony-stimulating factor produce immediate tumor destruction by polymorphonuclear leukocytes and macrophages via a “paraptosis”-induced pathway that promotes systemic immunity against intracranial T9 gliomas. Blood 100(4):1373–1380

    Article  PubMed  CAS  Google Scholar 

  13. Dal Canto MC, Gurney ME (1994) Development of central nervous system pathology in a murine transgenic model of human amyotrophic lateral sclerosis. Am J Pathol 145(6):1271–1279

    PubMed  CAS  Google Scholar 

  14. Xu XR, Huang J, Xu ZG, Qian BZ, Zhu ZD, Yan Q et al (2001) Insight into hepatocellular carcinogenesis at transcriptome level by comparing gene expression profiles of hepatocellular carcinoma with those of corresponding noncancerous liver. Proc Natl Acad Sci USA 98(26):15089–15094

    Article  PubMed  CAS  Google Scholar 

  15. Hedenfalk I, Duggan D, Chen Y, Radmacher M, Bittner M, Simon R et al (2001) Gene-expression profiles in hereditary breast cancer. N Engl J Med 344(8):539–548

    Article  PubMed  CAS  Google Scholar 

  16. Liu ZH, Zhang D, Li KM, Liao QP (2004) Expression of PDCD5 in tissues of normal cervix, CIN I–III and cervical cancer. J Peking Univ (Health Sci) 36(4):407–410

    Google Scholar 

  17. Du Y, Hong T (2003) A preliminary study on the relationship between TF-1 cell apoptosis-related gene 19 and thyroid tumor. Chin J Intern Med 42:492–494

    CAS  Google Scholar 

  18. Yang YH, Zhao M, Li WM, Lu YY, Chen YY, Kang B et al (2006) Expression of programmed cell death 5 gene involves in regulation of apoptosis in gastric tumor cells. Apoptosis 11(6):993–1001

    Article  PubMed  CAS  Google Scholar 

  19. Ruan GR, Chen SS, Chang Y, Li JL, Qin YZ, Li LD et al (2007) Adenovirus-mediated PDCD5 gene transfer sensitizes apoptosis of K562 cells induced by etoposide. J Exp Hematol 15:936–940

    Google Scholar 

  20. Creutzig U, Körholz D, Niemeyer CM, Kabisch H, Graf N, Reiter A et al (2000) Toxicity and effectiveness of high-dose idarubicin during AML induction therapy: results of a pilot study in children. Klin Padiatr 212(4):163–168

    Article  PubMed  CAS  Google Scholar 

  21. Rockwell SC, Kallman RF, Fajardo LF (1972) Characteristics of a serially transplanted mouse mammary tumor and its tissue-culture-adapted derivative. J Natl Cancer Inst 49(3):735–749

    PubMed  CAS  Google Scholar 

  22. Milas L, Raju U, Liao Z, Ajani J (2005) Targeting molecular determinants of tumor chemo-radioresistance. Semin Oncol 32(6 Suppl 9):S78–S81

    Article  PubMed  CAS  Google Scholar 

  23. Kohn KW, Pommier Y, Kerrigan D, Markovits J, Covey JM (1987) Topoisomerase II as a target of anticancer drug action in mammalian cells. NCI Monogr (4):61–71

  24. Isaacs RJ, Davies SL, Wells NJ, Harris AL (1995) Topoisomerases II alpha and beta as therapy targets in breast cancer. Anticancer Drugs 6(2):195–211

    Article  PubMed  CAS  Google Scholar 

  25. Dartsch DC, Gieseler F (2007) Repair of idarubicin-induced DNA damage: a cause of resistance? DNA Repair (Amst) 6(11):1618–1628

    Article  CAS  Google Scholar 

  26. Berger JM, Gamblin SJ, Harrison SC, Wang JC (1996) Structure and mechanism of DNA topoisomerase II. Nature 379(6562):225–232

    Article  PubMed  CAS  Google Scholar 

  27. Cheon J, Ko SC, Gardner TA, Shirakawa T, Gotoh A, Kao C et al (1997) Chemogene therapy: osteocalcin promoter-based suicide gene therapy in combination with methotrexate in a murine osteosarcoma model. Cancer Gene Ther 4(6):359–365

    PubMed  CAS  Google Scholar 

  28. Nemunaitis J, Swisher SG, Timmons T, Connors D, Mack M, Doerksen L et al (2000) Adenovirus-mediated p53 gene transfer in sequence with cisplatin to tumors of patients with non-small-cell lung cancer. J Clin Oncol 18(3):609–622

    PubMed  CAS  Google Scholar 

  29. Dong YB, Yang HL, Elliott MJ, McMasters KM (2002) Adenovirus-mediated E2F-1 gene transfer sensitizes melanoma cells to apoptosis induced by topoisomerase II inhibitors. Cancer Res 62(6):1776–1783

    PubMed  CAS  Google Scholar 

  30. Ma X, Ruan G, Wang Y, Li Q, Zhu P, Qin YZ et al (2005) Two single-nucleotide polymorphisms with linkage disequilibrium in the human programmed cell death 5 gene 5’ regulatory region affect promoter activity and the susceptibility of chronic myelogenous leukemia in Chinese population. Clin Cancer Res 11(24 Pt 1):8592–8599

    Article  PubMed  CAS  Google Scholar 

  31. Chen Y, Sun R, Han W, Zhang Y, Song Q, Di C et al (2001) Nuclear translocation of PDCD5 (TFAR19): an early signal for apoptosis? FEBS Lett 509(2):191–196

    Article  PubMed  CAS  Google Scholar 

  32. Zou XJ, Peng JR, Zhong LJ, Lou YX, Liu D, Yang B et al (2006) Study on the interaction between PDCD5 and DNA Using MALDI-TOF-MS. J Chin Mass Spectrom Soc 27(suppl):179–180

    Google Scholar 

  33. Pai C, Wang A (2005) Structural study of DNA binding protein pdcd5 from sulfolobus solfataricus. Acta Cryst A 61:C224 (Abstr)

    Google Scholar 

Download references

Acknowledgments

This study was supported by the grant from National Natural Science Foundation of China (No. 30670894) and supported in part by the grant from the National High Technology Research and Development Program of China (863 Program) (No. 2002BA711A01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shan-Shan Chen or Xiao-Jun Huang.

Additional information

Guo-Rui Ruan and Hong-Shan Zhao contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruan, GR., Zhao, HS., Chang, Y. et al. Adenovirus-mediated PDCD5 gene transfer sensitizes K562 cells to apoptosis induced by idarubicin in vitro and in vivo. Apoptosis 13, 641–648 (2008). https://doi.org/10.1007/s10495-008-0206-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-008-0206-9

Keywords

Navigation