Skip to main content
Log in

Fetal bovine serum simultaneously stimulates apoptosis and DNA synthesis in premeiotic stages of spermatogenesis in spiny dogfish (Squalus acanthias) in vitro: modulation by androgen and spermatogenic activity status

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Using the simple cystic spermatogenesis in the shark testis as a model, we previously reported the relative resistance of immature spermatogonia (stem cell and early-stage spermatogonia) to apoptosis in the normal testis and after spermatoxicant exposure in vivo. Apoptosis was monitored by fluorescence image analysis of living cysts, using the validated acridine orange (AO) vital staining technique. Findings show that FBS simultaneously stimulates both apoptosis and [3H]thymidine incorporation in immature spermatogonial clones in a concentration-dependent manner in vitro. Furthermore, androgen inhibits apoptosis and increases cyst viability, more so with 10% FBS than with 1% FBS. All the effects were as a function of spermatogenic activity status but were distinct in early-stage spermatogonial cysts isolated from testes awakening from the previous winter spermatogenic arrest period. Results are discussed in the context of the alternating germ–Sertoli cell population kinetics of early-stage spermatogonial cysts in Squalus acanthias’s protracted testicular cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Griswold MD (1995) Interactions between germ cells and Sertoli cells in the testis. Biol Reprod 52:211–216

    Article  PubMed  CAS  Google Scholar 

  2. Loir M, Sourdaine P, Mendis-Handagama SMLC, Jégou B (1995) Cell–cell interactions in the testis of teleosts and elasmobranchs. Microsc Res Tech 32:533–552

    Article  PubMed  CAS  Google Scholar 

  3. Steinberger E, Steinberger A (1975) Spermatogenic function of the testis. In: Hamilton DW, Greep RO (eds) Endocrinology vol V male reproductive system. American Physiological Society, Washington

    Google Scholar 

  4. Kerr JB (1995) Macro, micro, and molecular research on spermatogenesis: the quest to understand its control. Microsc Res Tech 32:364–384

    Article  PubMed  CAS  Google Scholar 

  5. Parvinen M (1982) Regulation of the seminiferous epithelium. Endocrine Rev 3:404–417

    Article  CAS  Google Scholar 

  6. Kerr JB (1988) A light microscopic and morphometric analysis of the Sertoli cell during the spermatogenic cycle of the rat. Anat Embryol (Berl) 177:341–348

    Article  CAS  Google Scholar 

  7. De Franca LR, Ghosh S, Ye S, Russell LD (1993) Surface and surface-to-volume relationships of the Sertoli cell during the cycle of the seminiferous epithelium in the rat. Biol Reprod 49:1215–1228

    Article  PubMed  Google Scholar 

  8. Sharpe RM (1994) Regulation of spermatogenesis. In: Knobil E, Neill JD (eds) The physiology of reproduction, 2nd edn. Raven Press, New York

    Google Scholar 

  9. Timmons PM, Rigby PWJ, Poirer F (2002) The murine seminiferous epithelial cycle is pre-figured in the Sertoli cells of the embryonic testis. Development 129:635–647

    PubMed  CAS  Google Scholar 

  10. Yoshida S, Sukeno M, Nakagawa T et al (2006) The first round of mouse spermatogenesis is a distinctive program that lacks the self-renewing spermatogonia stage. Development 133:1495–1505

    Article  PubMed  CAS  Google Scholar 

  11. De Rooij DG, Janssen JM (1987) Regulation of the density of spermatogonia in the seminiferous epithelium of the Chinese hamster: I. Undifferentiated spermatogonia. Anat Rec 217:124–130

    Article  PubMed  Google Scholar 

  12. Schlatt S, Zhengwei Y, Meehan T, De Kretser DM, Loveland KL (1999) Application of morphometric techniques to postnatal rat testes in organ culture: insights into testis growth. Cell Tiss Res 298:335–343

    Article  CAS  Google Scholar 

  13. Boulogne B, Olaso R, Levacher C, Durand P, Habert R (1999) Apoptosis and mitosis in gonocytes of the rat testis during foetal and neonatal development. Int J Androl 22:356–365

    Article  PubMed  CAS  Google Scholar 

  14. McClusky LM (2005) Stage and season effects on cell cycle and apoptotic activities of germ cells and Sertoli cells during spermatogenesis in the spiny dogfish (Squalus acanthias). Reproduction 129:89–102

    Article  PubMed  CAS  Google Scholar 

  15. McClusky LM (2006) Stage-dependency of apoptosis and the blood-testis barrier in the dogfish shark (Squalus acanthias): cadmium-induced changes as assessed by vital fluorescence techniques. Cell Tiss Res 325: 541–553

    Article  CAS  Google Scholar 

  16. McClusky LM (2008) Cadmium accumulation and binding characteristics in intact Sertoli/germ cell units, and associated effects on stage-specific functions in vitro: insights from a shark testis model. J Appl Toxicol 28: 112–121

    Article  PubMed  CAS  Google Scholar 

  17. Pudney J, Callard GV (1984) Identification of Leydig-like cells in the interstitium of the shark testis (Squalus acanthias). Anat Rec 209:311–330

    Article  PubMed  CAS  Google Scholar 

  18. DuBois W, Callard GV (1991) Culture of intact Sertoli/germ cells units and isolated Sertoli cells from Squalus testis: I. Evidence of stage-related functions in vitro. J Exp Zool 258:359–372

    Article  PubMed  CAS  Google Scholar 

  19. DuBois W, Callard GV (1993) Culture of intact Sertoli/germ cell units and isolated Sertoli cells from Squalus testis. II. Stimulatory effects of insulin and IGF-I on DNA synthesis in premeiotic stages. J Exp Zool 267:233–244

    Article  PubMed  CAS  Google Scholar 

  20. Cuevas ME, Callard GV (1992) In vitro secretion by staged spermatocysts (Sertoli/germ cell units) of dogfish (Squalus acanthias) testis. Gen Comp Endocrinol 88:151–165

    Article  PubMed  CAS  Google Scholar 

  21. Piferrer F, Callard GV (1995) Inhibition of deoxyribonucleic acid synthesis during premeiotic stages of spermatogenesis by a factor from testis-associated lymphomyeloid tissue in the dogfish shark (Squalus acanthias). Biol Reprod 53:390–398

    Article  PubMed  CAS  Google Scholar 

  22. Roosen-Runge EC (1977) The process of spermatogenesis in animals. Cambridge University Press, London

    Google Scholar 

  23. Abrams JM, White K, Fessler I (1993) Programmed cell death during Drosophila embryogenesis. Development 117:29–43

    PubMed  CAS  Google Scholar 

  24. Durrieu F, Belloc F, Lacoste L et al (1998) Caspase activation is an early event in anthracycline-induced apoptosis and allows detection of apoptotic cells before they are ingested by phagocytes. Exp Cell Res 240:165–175

    Article  PubMed  CAS  Google Scholar 

  25. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  26. Schwartz JR, Roy SK (1998) In vitro culture of hamster ovarian primary interstitial cells: effects of serum. Biol Reprod 59:1187–1194

    Article  PubMed  CAS  Google Scholar 

  27. Byrne AT, Southgate J, Brison DR, Leese HJ (1999) Analysis of apoptosis in the preimplantation bovine embryo using TUNEL. Reproduction 117:97–105

    Article  CAS  Google Scholar 

  28. Cui X, Jeong Y, Lee H, Cheon S, Kim N (2004) Fetal bovine serum influences apoptosis and apoptosis-related gene expression in porcine parthenotes developing in vitro. Reproduction 127:125–130

    Article  PubMed  CAS  Google Scholar 

  29. Bertolero F, Kaighn ME, Camalier RF, Saffiotti U (1986) Effects of serum and serum-derived factors on growth and differentiation of mouse keratinocytes. In vitro Cell Dev Biol 22:423–428

    Article  PubMed  CAS  Google Scholar 

  30. Zheng X, Baker H, Hancock WS, Fawaz F, McCaman M, Pungor E (2006) Proteomic analysis for the assessment of different lots of fetal bovine serum as a raw material for cell culture. Part IV. Application of proteomics to the manufacture of biological drugs. Biotechnol Prog 22:1294–1300

    Article  PubMed  CAS  Google Scholar 

  31. Kodiara K, Imada M, Goto M et al (2006) Purification and identification of a BMP-like factor from bovine serum. Biochem Biophys Res Comm 345:1224–1231

    Article  CAS  Google Scholar 

  32. Pellegrini M, Grimaldi P, Rossi P, Geremia R, Dolci S (2003) Developmental expression of BMP4/ALK3/SMAD5 signaling pathway in the mouse testis: a potential role of BMP4 in spermatogonia differentiation. J Cell Sci 116:3363–3372

    Article  PubMed  CAS  Google Scholar 

  33. Yu CL, Tsai MH (2001) Fetal fetuin selectively induces apoptosis in cancer cell lines and shows anti-cancer activity in tumor animal models. Cancer Lett 166:173–184

    Article  PubMed  CAS  Google Scholar 

  34. Inoue CN, Nagano I, Ichinohasama R, Asatao N, Kondo Y, Iinuma K (2001) Bimodal effects of platelet-derived growth factor on rat mesangial proliferation and death, and the role lysophosphatidic acid in cell survival. Clin Sci 101:11–19

    Article  PubMed  CAS  Google Scholar 

  35. Kuno G, Hink WF, Briggs JD (1971) Growth-promoting serum proteins for Aedes eagypti cells cultured in vitro. J Insect Physiol 17:1865–1873

    Article  PubMed  CAS  Google Scholar 

  36. Pinyopummintr T, Bavister BD (1994) Development of bovine embryos in a cell-free culture medium: effects of type of serum, timing of its inclusion and heat-inactivation. Theriogenology 41:1241–1249

    Article  PubMed  CAS  Google Scholar 

  37. Wesselborg S, Janssen O, Kabelitz D (1993) Induction of activation-driven death (apoptosis) in activated, but not resting peripheral blood T cells. J Immunol 150:4338–4345

    PubMed  CAS  Google Scholar 

  38. Radvanyi LG, Shi Y, Mills GB, Miller RG (1996) Cell cycle progression out of G1 sensitizes primary-cultured nontransformed T cells to TCR-mediated apoptosis. Cell Immunol 170:260–273

    Article  PubMed  Google Scholar 

  39. Ruben LN, Johnson RO, Bergin A, Clothier RH (2000) Apoptosis and the cell cycle in Xenopus: PMA and MPMA exposure of splenocytes. Apoptosis 5:225–233

    Article  PubMed  CAS  Google Scholar 

  40. King KL, Cidlowski JA (1998) Cell cycle regulation and apoptosis. Ann Rev Physiol 60:601–617

    Article  CAS  Google Scholar 

  41. Durrieu F, Samejima K, Fortune JM, Kandels-Lewis S, Osheroff N, Earnshaw WC (2000) DNA topoisomerase IIα interacts with nuclease and is involved in chromatin condensation during apoptotic execution. Curr Biol 10:923–926

    Article  PubMed  CAS  Google Scholar 

  42. Kuranaga E, Miura M (2007) Nonapoptotic functions of caspases: caspases as regulatory molecules for immunity and cell-fate determination. Trends Cell Biol 17:135–144

    Article  PubMed  CAS  Google Scholar 

  43. Charvet CJ, Striedter GF (2008) Spatiotemporal clustering of cell death in the avian forebrain proliferative zone. Int J Dev Biol. doi:10.1387/ijdb.072455cc

  44. Callard GV, Jorgensen JC, Redding JM (1995) Biochemical analysis of programmed cell death during premeiotic stages of spermatogenesis in vivo and in vitro. Dev Gen 16:140–147

    Article  CAS  Google Scholar 

  45. Cuevas ME, Miller W, Callard GV (1992) Sulfoconjugation of steroids and the vascular pathway of communication in dogfish testis. J Exp Zool 264:119–129

    Article  PubMed  CAS  Google Scholar 

  46. Callard GV, Pudney JA, Mak P, Canick J (1985) Stage-dependent changes in steroidogenic enzymes and estrogen receptors during spermatogenesis in the testis of the dogfish Squalus acanthias. Endocrinology 117:1328–1335

    Article  PubMed  CAS  Google Scholar 

  47. Cuevas ME, Callard GV (1992) Androgen and progesterone receptors in shark (Squalus) testis: characteristics and stage-related distribution. Endocrinology 130:2173–2182

    Article  PubMed  CAS  Google Scholar 

  48. Sourdaine P, Garnier DH, Jégou B (1990) The adult dogfish (Scyliorhinus canicula L.) testis: a model to study stage-dependent changes in steroid levels during spermatogenesis. J Endocrinol 127:451–460

    PubMed  CAS  Google Scholar 

  49. Henriksen K, Hakorvita H, Parvinen M (1995) Testosterone inhibits and induces apoptosis in rat seminiferous tubules in a stage-specific manner: in situ quantification in squash preparations after administration of ethane dimethane sulfonate. Endocrinology 136:3285–3291

    Article  PubMed  CAS  Google Scholar 

  50. Bruckheimer EM, Kypriano N (2001) Dihydrotestosterone enhances transforming growth factor-β-induced apoptosis in hormone-sensitive prostate cancer cells. Endocrinology 142:2419–2426

    Article  PubMed  CAS  Google Scholar 

  51. Walker WH, Cheng J (2005) FSH and testosterone signalling in Sertoli cells. Reproduction 130:15-28

    Article  PubMed  CAS  Google Scholar 

  52. Amsterdam A, Dantes A, Selvaraj N, Aharoni D (1997) Apoptosis in steroidogenic cells: structure–function analysis. Steroids 62:207–210

    Article  PubMed  CAS  Google Scholar 

  53. Loir M (1994) In vitro approach to the control of spermatogonia proliferation in the trout. Mol Cell Endocrinol 102:141–150

    Article  PubMed  CAS  Google Scholar 

  54. Loir M (1999) Spermatogonia of rainbow trout: II. In vitro study of the influence of pituitary hormones, growth factors and steroids on mitotic activity. Mol Reprod Dev 53:434–442

    Article  PubMed  CAS  Google Scholar 

  55. Loir M (1999) Spermatogonia of rainbow trout: III. In vitro study of the proliferative response to extracellular ATP and adenosine. Mol Reprod Dev 53:443–450

    Article  PubMed  CAS  Google Scholar 

  56. Dobson S, Dodd JM (1977) Endocrine control of the testis in the dogfish Scyliorhinus canicula L. II. Histological and ultrastructural changes in the testis after partial hypophysectomy (ventral lobectomy). Gen Comp Endocrinol 32:53–71

    Article  PubMed  CAS  Google Scholar 

  57. Dobson S, Dodd JM (1977) The roles of temperature and photoperiod in the response of the testis of the dogfish, Scyliorhinus canicula L. to partial hypophysectomy (ventral lobectomy). Gen Comp Endocrinol 32:114–115

    Article  PubMed  CAS  Google Scholar 

  58. Huckins C (1978) The morphology and kinetics of spermatogonial degeneration in normal adult rats: an analysis using a simplified classification of the germinal epithelium. Anat Rec 190:905–926

    Article  PubMed  CAS  Google Scholar 

  59. Russell LD, Clermont Y (1977) Degeneration of germ cells in normal, hypophysectomised and hormone treated hypophysectomised rats. Anat Rec 187:347–366

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was carried out in part at the Mount Desert Island Biological Laboratory, Salisbury Cove, ME, USA and Boston University, Boston, MA, USA, and supported in part by a fellowship from the National Research Foundation of South Africa. Technical assistance provided by Andy Sexton (Marine Biological Laboratory, Woods Hole, MA, USA); Janet Fields and Vic Nordahl (National Marine Fisheries Service, Woods Hole, MA, USA); and Arnold Howe (Massachusetts Division of Marine Fisheries, Cape Cod Bay, MA, USA) in the collection of shark specimens is greatly appreciated. The author also wishes to thank Dr. David Miller (NIEHS) for his advice on fluorescence microscopy and Dr. Gloria Callard (Boston University) for helpful discussions during preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leon Mendel McClusky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McClusky, L.M. Fetal bovine serum simultaneously stimulates apoptosis and DNA synthesis in premeiotic stages of spermatogenesis in spiny dogfish (Squalus acanthias) in vitro: modulation by androgen and spermatogenic activity status. Apoptosis 13, 649–658 (2008). https://doi.org/10.1007/s10495-008-0205-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-008-0205-x

Keywords

Navigation