Skip to main content

A high-content chemical screen identifies ellipticine as a modulator of p53 nuclear localization

Abstract

p53 regulates apoptosis and the cell cycle through actions in the nucleus and cytoplasm. Altering the subcellular localization of p53 can alter its biological function. Therefore, small molecules that change the localization of p53 would be useful chemical probes to understand the influence of subcellular localization on the function of p53. To identify such molecules, a high-content screen for compounds that increased the localization of p53 to the nucleus or cytoplasm was developed, automated, and conducted. With this image-based assay, we identified ellipticine that increased the nuclear localization of GFP-mutant p53 protein but not GFP alone in Saos-2 osteosarcoma cells. In addition, ellipticine increased the nuclear localization of endogenous p53 in HCT116 colon cancer cells with a resultant increase in the transactivation of the p21 promoter. Increased nuclear p53 after ellipticine treatment was not associated with an increase in DNA double stranded breaks, indicating that ellipticine shifts p53 to the nucleus through a mechanism independent of DNA damage. Thus, a chemical biology approach has identified a molecule that shifts the localization of p53 and enhances its nuclear activity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

HCS:

High-content screening

SDS-PAGE:

SDS-polyacrylamide gel electrophoresis

References

  1. Horn HF, Vousden KH (2007) Coping with stress: multiple ways to activate p53. Oncogene 26(9):1306–1316

    PubMed  Article  CAS  Google Scholar 

  2. Helton ES, Chen X (2007) p53 modulation of the DNA damage response. J Cell Biochem 100(4):883–896

    PubMed  Article  CAS  Google Scholar 

  3. Chipuk JE, Green DR (2006) Dissecting p53-dependent apoptosis. Cell Death Differ 13(6):994–1002

    PubMed  Article  CAS  Google Scholar 

  4. Speidel D, Helmbold H, Deppert W (2006) Dissection of transcriptional and non-transcriptional p53 activities in the response to genotoxic stress. Oncogene 25(6):940–953

    PubMed  Article  CAS  Google Scholar 

  5. Chipuk JE, Maurer U, Green DR, Schuler M (2003) Pharmacologic activation of p53 elicits Bax-dependent apoptosis in the absence of transcription. Cancer Cell 4(5):371–381

    PubMed  Article  CAS  Google Scholar 

  6. Chipuk JE, Kuwana T, Bouchier-Hayes L, Droin NM, Newmeyer DD, Schuler M et al (2004) Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303(5660):1010–1014

    PubMed  Article  CAS  Google Scholar 

  7. O’Brate A, Giannakakou P (2003) The importance of p53 location: nuclear or cytoplasmic zip code? Drug Resist Updat 6(6):313–322

    PubMed  Article  CAS  Google Scholar 

  8. Nikolaev AY, Li M, Puskas N, Qin J, Gu W (2003) Parc: a cytoplasmic anchor for p53. Cell 112(1):29–40

    PubMed  Article  CAS  Google Scholar 

  9. Kawaguchi Y, Ito A, Appella E, Yao TP (2006) Charge modification at multiple C-terminal lysine residues regulates p53 oligomerization and its nucleus-cytoplasm trafficking. J Biol Chem 281(3):1394–1400

    PubMed  Article  CAS  Google Scholar 

  10. Tewey KM, Chen GL, Nelson EM, Liu LF (1984) Intercalative antitumor drugs interfere with the breakage-reunion reaction of mammalian DNA topoisomerase II. J Biol Chem 259(14):9182–9187

    PubMed  CAS  Google Scholar 

  11. Huff AC, Kreuzer KN (1990) Evidence for a common mechanism of action for antitumor and antibacterial agents that inhibit type II DNA topoisomerases. J Biol Chem 265(33):20496–20505

    PubMed  CAS  Google Scholar 

  12. Mawji IA, Simpson CD, Hurren R, Gronda M, Williams MA, Filmus J et al (2007) Critical role for Fas-associated death domain-like interleukin-1-converting enzyme-like inhibitory protein in anoikis resistance and distant tumor formation. JNCI 99(10):811–822

    PubMed  CAS  Google Scholar 

  13. Schimmer AD, Thomas MP, Hurren R, Gronda M, Pellecchia M, Pond GR et al (2006) Identification of small molecules that sensitize resistant tumor cells to tumor necrosis factor-family death receptors. Cancer Res 66(4):2367–2375

    PubMed  Article  CAS  Google Scholar 

  14. Carter BZ, Gronda M, Wang Z, Welsh K, Pinilla C, Andreeff M et al (2005) Small-molecule XIAP inhibitors derepress downstream effector caspases and induce apoptosis of acute myeloid leukemia cells. Blood 105(10):4043–4050

    PubMed  Article  CAS  Google Scholar 

  15. Gangopadhyay S, Jalali F, Reda D, Peacock J, Bristow RG, Benchimol S (2002) Expression of different mutant p53 transgenes in neuroblastoma cells leads to different cellular responses to genotoxic agents. Exp Cell Res 275(1):122–131

    PubMed  Article  CAS  Google Scholar 

  16. Sakurai T, Itoh K, Liu Y, Higashitsuji H, Sumitomo Y, Sakamaki K et al (2005) Low temperature protects mammalian cells from apoptosis initiated by various stimuli in vitro. Exp Cell Res 309(2):264–272

    PubMed  Article  CAS  Google Scholar 

  17. Karni-Schmidt O, Friedler A, Zupnick A, McKinney K, Mattia M, Beckerman R et al (2007) Energy-dependent nucleolar localization of p53 in vitro requires two discrete regions within the p53 carboxyl terminus. Oncogene 26:3878–3891

    PubMed  Article  CAS  Google Scholar 

  18. Pokrovskaja K, Mattsson K, Kashuba E, Klein G, Szekely L (2001) Proteasome inhibitor induces nucleolar translocation of Epstein-Barr virus-encoded EBNA-5. J Gen Virol 82(Pt 2):345–358

    PubMed  CAS  Google Scholar 

  19. Zhang JH, Chung TD, Oldenburg KR (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 4(2):67–73

    PubMed  Article  Google Scholar 

  20. Fritsche M, Haessler C, Brandner G (1993) Induction of nuclear accumulation of the tumor-suppressor protein p53 by DNA-damaging agents. Oncogene 8(2):307–318

    PubMed  CAS  Google Scholar 

  21. Kuo PL, Hsu YL, Chang CH, Lin CC (2005) The mechanism of ellipticine-induced apoptosis and cell cycle arrest in human breast MCF-7 cancer cells. Cancer Lett 223(2):293–301

    PubMed  Article  CAS  Google Scholar 

  22. Kuo YC, Kuo PL, Hsu YL, Cho CY, Lin CC (2006) Ellipticine induces apoptosis through p53-dependent pathway in human hepatocellular carcinoma HepG2 cells. Life Sci 78(22):2550–2557

    PubMed  Article  CAS  Google Scholar 

  23. Peng Y, Li C, Chen L, Sebti S, Chen J (2003) Rescue of mutant p53 transcription function by ellipticine. Oncogene 22(29):4478–4487

    PubMed  Article  CAS  Google Scholar 

  24. Zhu Q, Wani G, Yao J, Patnaik S, Wang QE, El-Mahdy MA et al (2007) The ubiquitin-proteasome system regulates p53-mediated transcription at p21(waf1) promoter. Oncogene 26:4199–4208

    PubMed  Article  CAS  Google Scholar 

  25. Li Q, Falsey RR, Gaitonde S, Sotello V, Kislin K, Martinez JD (2007) Genetic analysis of p53 nuclear importation. Oncogene 26(57):7885–7893

    PubMed  Article  CAS  Google Scholar 

  26. Middeler G, Zerf K, Jenovai S, Thulig A, Tschodrich-Rotter M, Kubitscheck U et al (1997) The tumor suppressor p53 is subject to both nuclear import and export, and both are fast, energy-dependent and lectin-inhibited. Oncogene 14(12):1407–1417

    PubMed  Article  CAS  Google Scholar 

  27. Liang SH, Clarke MF (1999) The nuclear import of p53 is determined by the presence of a basic domain and its relative position to the nuclear localization signal. Oncogene 18(12):2163–2166

    PubMed  Article  CAS  Google Scholar 

  28. Liang SH, Clarke MF (1999) A bipartite nuclear localization signal is required for p53 nuclear import regulated by a carboxyl-terminal domain. J Biol Chem 274(46):32699–32703

    PubMed  Article  CAS  Google Scholar 

  29. Stommel J, Marchenko N, Jimenez G, Moll U, Hope T, Wahl G (1999) A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking. EMBO J 18(6):1660–1672

    PubMed  Article  CAS  Google Scholar 

  30. Nie L, Sasaki M, Maki CG (2007) Regulation of p53 nuclear export through sequential changes in conformation and ubiquitination. J Biol Chem 282(19):14616–14625

    PubMed  Article  CAS  Google Scholar 

  31. Li M, Brooks CL, Wu-Baer F, Chen D, Baer R, Gu W (2003) Mono- versus polyubiquitination: differential control of p53 fate by Mdm2. Science 302(5652):1972–1975

    PubMed  Article  CAS  Google Scholar 

  32. Shieh SY, Ikeda M, Taya Y, Prives C (1997) DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91:325–334

    PubMed  Article  CAS  Google Scholar 

  33. Schneiderhan N, Budde A, Zhang Y, Brune B (2003) Nitric oxide induces phosphorylation of p53 and impairs nuclear export. Oncogene 22(19):2857–2868

    PubMed  Article  CAS  Google Scholar 

  34. Kuo PL, Hsu YL, Kuo YC, Chang CH, Lin CC (2005) The anti-proliferative inhibition of ellipticine in human breast mda-mb-231 cancer cells is through cell cycle arrest and apoptosis induction. Anticancer Drugs 16(7):789–795

    PubMed  Article  CAS  Google Scholar 

  35. Ohashi M, Sugikawa E, Nakanishi N (1995) Inhibition of p53 protein phosphorylation by 9-hydroxyellipticine: a possible anticancer mechanism. Jpn J Cancer Res 86(9):819–827

    PubMed  CAS  Google Scholar 

  36. Hubert A, Paris S, Piret JP, Ninane N, Raes M, Michiels C (2006) Casein kinase 2 inhibition decreases hypoxia-inducible factor-1 activity under hypoxia through elevated p53 protein level. J Cell Sci 119(Pt 16):3351–3362

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Sam Benchimol for helpful advice and discussions. This work was supported by the Canadian Institutes of Health Research (CIHR), and the Ontario Cancer Research Network through funding from the province of Ontario. I.A.M. is the recipient of the Edward Christie Stevens Fellowship in Medical Research. A.D.S. is the recipient of a CIHR Clinician Scientist Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron D. Schimmer.

Additional information

G. Wei Xu and Imtiaz A. Mawji have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 53 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Xu, G.W., Mawji, I.A., Macrae, C.J. et al. A high-content chemical screen identifies ellipticine as a modulator of p53 nuclear localization. Apoptosis 13, 413–422 (2008). https://doi.org/10.1007/s10495-007-0175-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-007-0175-4

Keywords

  • High-throughput screen
  • p53
  • Ellipticine