Skip to main content
Log in

The COP9 signalosome-mediated deneddylation is stimulated by caspases during apoptosis

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

In concert with the ubiquitin (Ub) proteasome system (UPS) the COP9 signalosome (CSN) controls the stability of cellular regulators. The CSN interacts with cullin-RING Ub ligases (CRLs) consisting of a specific cullin, a RING protein as Rbx1 and substrate recognition proteins. The Ub-like protein Nedd8 is covalently linked to cullins and removed by the CSN-mediated deneddylation. Cycles of neddylation and deneddylation regulate CRLs. Apoptotic stimuli cause caspase-dependent modifications of the UPS. However, little is known about the CSN during apoptosis. We demonstrate in vitro and in vivo that CSN6 is cleaved most effectively by caspase 3 at D23 after 2–3 h of apoptosis induced by anti-Fas-Ab or etoposide. CSN6 processing occurs in CSN–CRL complexes and is followed by the cleavage of Rbx1, the direct interaction partner of CSN6. Caspase-dependent cutting of Rbx1 is accompanied by decrease of neddylated proteins in Jurkat T cells. Another functional consequence of CSN6 cleavage is the enhancement of CSN-mediated deneddylating activity causing deneddylation of cullin 1 in cells. The CSN-associated deubiquitinating as well as kinase activity remained unchanged in presence of active caspase 3. The cleavage of Rbx1 and increased deneddylation of cullins inactivate CRLs and presumably stabilize pro-apoptotic factors for final apoptotic steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Deng XW, Dubiel W, Wei N, Hofmann K, Mundt K, Colicelli J, Kato J, Naumann M, Segal D, Seeger M, Carr A, Glickman M, Chamovitz DA (2000) Unified nomenclature for the COP9 signalosome and its subunits: an essential regulator of development. Trends Genet 16:202–203

    Article  PubMed  CAS  Google Scholar 

  2. Petroski MD, Deshaies RJ (2005) Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol 6:9–20

    Article  PubMed  CAS  Google Scholar 

  3. Willems AR, Schwab M, Tyers M (2004) A hitchhiker’s guide to the cullin ubiquitin ligases: SCF and its kin. Biochim Biophys Acta 1695:133–170

    Article  PubMed  CAS  Google Scholar 

  4. Bornstein G, Ganoth D, Hershko A (2006) Regulation of neddylation and deneddylation of cullin1 in SCFSkp2 ubiquitin ligase by F-box protein and substrate. Proc Natl Acad Sci USA 103:11515–11520

    Article  PubMed  CAS  Google Scholar 

  5. Schwechheimer C, Serino G, Callis J, Crosby WL, Lyapina S, Deshaies RJ, Gray WM, Estelle M, Deng XW (2001) Interactions of the COP9 signalosome with the E3 ubiquitin ligase SCFTIRI in mediating auxin response. Science 292:1379–1382

    Article  PubMed  CAS  Google Scholar 

  6. Lyapina S, Cope G, Shevchenko A, Serino G, Tsuge T, Zhou C, Wolf DA, Wei N, Deshaies RJ (2001) Promotion of NEDD-CUL1 conjugate cleavage by COP9 signalosome. Science 292:1382–1385

    Article  PubMed  CAS  Google Scholar 

  7. Groisman R, Polanowska J, Kuraoka I, Sawada J, Saijo M, Drapkin R, Kisselev AF, Tanaka K, Nakatani Y (2003) The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell 113:357–367

    Article  PubMed  CAS  Google Scholar 

  8. Liu C, Poitelea M, Watson A, Yoshida SH, Shimoda C, Holmberg C, Nielsen O, Carr AM (2005) Transactivation of Schizosaccharomyces pombe cdt2+ stimulates a Pcu4-Ddb1-CSN ubiquitin ligase. EMBO J 24:3940–3951

    Article  PubMed  CAS  Google Scholar 

  9. Bech-Otschir D, Kapelari B, Dubiel W (2005). The COP9 signalosome: its possible role in the ubiquitin system. In: Mayer R, Ciechanover A, Rechsteiner M (eds) Protein degradation, volume 1: ubiquitin and the chemistry of life. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 348–369

    Google Scholar 

  10. Freilich S, Oron E, Kapp Y, Nevo-Caspi Y, Orgad S, Segal D, Chamovitz DA (1999) The COP9 signalosome is essential for development of Drosophila melanogaster. Curr Biol 9:1187–1190

    Article  PubMed  CAS  Google Scholar 

  11. Wei N, Deng XW (2003) The COP9 signalosome. Annu Rev Cell Dev Biol 19:261–286

    Article  PubMed  CAS  Google Scholar 

  12. Busch S, Schwier EU, Nahlik K, Bayram O, Helmstaedt K, Draht OW, Krappmann S, Valerius O, Lipscomb WN, Braus GH (2007) An eight-subunit COP9 signalosome with an intact JAMM motif is required for fungal fruit body formation. Proc Natl Acad Sci USA 104:8089–8094

    Article  PubMed  CAS  Google Scholar 

  13. Jesenberger V, Jentsch S (2002) Deadly encounter: ubiquitin meets apoptosis. Nat Rev Mol Cell Biol 3:112–121

    Article  PubMed  CAS  Google Scholar 

  14. Bech-Otschir D, Kraft R, Huang X, Henklein P, Kapelari B, Pollmann C, Dubiel W (2001) COP9 signalosome-specific phosphorylation targets p53 to degradation by the ubiquitin system. EMBO J 20:1630–1639

    Article  PubMed  CAS  Google Scholar 

  15. MacFarlane M, Merrison W, Bratton SB, Cohen GM (2002) Proteasome-mediated degradation of Smac during apoptosis: XIAP promotes Smac ubiquitination in vitro. J Biol Chem 277:36611–36616

    Article  PubMed  CAS  Google Scholar 

  16. Fullbeck M, Huang X, Dumdey R, Frommel C, Dubiel W, Preissner R (2005) Novel curcumin- and emodin-related compounds identified by in silico 2D/3D conformer screening induce apoptosis in tumor cells. BMC Cancer 5:97

    Article  PubMed  Google Scholar 

  17. Schweitzer K, Bozko PM, Dubiel W, Naumann M (2007) CSN controls NF-kappaB by deubiquitinylation of IkappaBalpha. EMBO J 26:1532–1541

    Article  PubMed  CAS  Google Scholar 

  18. Karin M, Ben-Neriah Y (2000) Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol 18:621–663

    Article  PubMed  CAS  Google Scholar 

  19. Yin D, Zhou H, Kumagai T, Liu G, Ong JM, Black KL, Koeffler HP (2005) Proteasome inhibitor PS-341 causes cell growth arrest and apoptosis in human glioblastoma multiforme (GBM). Oncogene 24:344–354

    Article  PubMed  CAS  Google Scholar 

  20. Fribley A, Wang CY (2006) Proteasome inhibitor induces apoptosis through induction of endoplasmic reticulum stress. Cancer Biol Ther 5:745–748

    PubMed  CAS  Google Scholar 

  21. Bratton SB, MacFarlane M, Cain K, Cohen GM (2000) Protein complexes activate distinct caspase cascades in death receptor and stress-induced apoptosis. Exp Cell Res 256:27–33

    Article  PubMed  CAS  Google Scholar 

  22. Reed JC (2000) Mechanisms of apoptosis. Am J Pathol 157:1415–1430

    PubMed  CAS  Google Scholar 

  23. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–489

    Article  PubMed  CAS  Google Scholar 

  24. Zou H, Henzel WJ, Liu X, Lutschg A, Wang X (1997) Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90:405–413

    Article  PubMed  CAS  Google Scholar 

  25. Peter ME, Kischkel FC, Hellbardt S, Chinnaiyan AM, Krammer PH, Dixit VM (1996) CD95 (APO-1/Fas)-associating signalling proteins. Cell Death Differ 3:161–170

    PubMed  CAS  Google Scholar 

  26. Sun XM, Butterworth M, MacFarlane M, Dubiel W, Ciechanover A, Cohen GM (2004) Caspase activation inhibits proteasome function during apoptosis. Mol Cell 14:81–93

    Article  PubMed  CAS  Google Scholar 

  27. MacFarlane M, Merrison W, Dinsdale D, Cohen GM (2000) Active caspases and cleaved cytokeratins are sequestered into cytoplasmic inclusions in TRAIL-induced apoptosis. J Cell Biol 148:1239–1254

    Article  PubMed  CAS  Google Scholar 

  28. Sun XM, MacFarlane M, Zhuang J, Wolf BB, Green DR, Cohen GM (1999) Distinct caspase cascades are initiated in receptor-mediated and chemical-induced apoptosis. J Biol Chem 274:5053–5060

    Article  PubMed  CAS  Google Scholar 

  29. Seeger M, Kraft R, Ferrell K, Bech-Otschir D, Dumdey R, Schade R, Gordon C, Naumann M, Dubiel W (1998) A novel protein complex involved in signal transduction possessing similarities to 26S proteasome subunits. FASEB J 12:469–478

    PubMed  CAS  Google Scholar 

  30. Uhle S, Medalia O, Waldron R, Dumdey R, Henklein P, Bech-Otschir D, Huang X, Berse M, Sperling J, Schade R, Dubiel W (2003) Protein kinase CK2 and protein kinase D are associated with the COP9 signalosome. EMBO J 22:1302–1312

    Article  PubMed  CAS  Google Scholar 

  31. Hetfeld BK, Helfrich A, Kapelari B, Scheel H, Hofmann K, Guterman A, Glickman M, Schade R, Kloetzel PM, Dubiel W (2005) The zinc finger of the CSN-associated deubiquitinating enzyme USP15 is essential to rescue the E3 ligase Rbx1. Curr Biol 15:1217–1221

    Article  PubMed  CAS  Google Scholar 

  32. Hetfeld BK, Bech-Otschir D, Dubiel W (2005) Purification method of the COP9 signalosome from human erythrocytes. Methods Enzymol 398:481–491

    Article  PubMed  CAS  Google Scholar 

  33. Huang X, Hetfeld BK, Seifert U, Kahne T, Kloetzel PM, Naumann M, Bech-Otschir D, Dubiel W (2005) Consequences of COP9 signalosome and 26S proteasome interaction. FEBS J 272:3909–3917

    Article  PubMed  CAS  Google Scholar 

  34. Faragher AJ, Sun XM, Butterworth M, Harper N, Mulheran M, Ruchaud S, Earnshaw WC, Cohen GM (2007) Death receptor-induced apoptosis reveals a novel interplay between the chromosomal passenger complex and CENP-C during interphase. Mol Biol Cell 18:1337–1347

    Article  PubMed  CAS  Google Scholar 

  35. Correia Jda S, Miranda Y, Leonard N, Ulevitch RJ (2007) The subunit CSN6 of the COP9 signalosome is cleaved during apoptosis. J Biol Chem 282:12557–12565

    Article  Google Scholar 

  36. Gusmaroli G, Figueroa P, Serino G, Deng XW (2007) Role of the MPN subunits in COP9 signalosome assembly and activity, and their regulatory interaction with Arabidopsis cullin3-based E3 ligases. Plant Cell 19:564–581

    Article  PubMed  CAS  Google Scholar 

  37. Peng Z, Shen Y, Feng S, Wang X, Chitteti BN, Vierstra RD, Deng XW (2003) Evidence for a physical association of the COP9 signalosome, the proteasome, and specific SCF E3 ligases in vivo. Curr Biol 13:R504–R505

    Article  PubMed  CAS  Google Scholar 

  38. Cope GA, Suh GS, Aravind L, Schwarz SE, Zipursky SL, Koonin EV, Deshaies RJ (2002) Role of predicted metalloprotease motif of Jab1/Csn5 in cleavage of Nedd8 from Cul1. Science 298:608–611

    Article  PubMed  CAS  Google Scholar 

  39. Wee S, Geyer RK, Toda T, Wolf DA (2005) CSN facilitates cullin-RING ubiquitin ligase function by counteracting autocatalytic adapter instability. Nat Cell Biol 7:387–391

    Article  PubMed  CAS  Google Scholar 

  40. Kamura T, Conrad MN, Yan Q, Conaway RC, Conaway JW (1999) The Rbx1 subunit of SCF and VHL E3 ubiquitin ligase activates Rub1 modification of cullins Cdc53 and Cul2. Genes Dev 13:2928–2933

    Article  PubMed  CAS  Google Scholar 

  41. Megumi Y, Miyauchi Y, Sakurai H, Nobeyama H, Lorick K, Nakamura E, Chiba T, Tanaka K, Weissman AM, Kirisako T, Ogawa O, Iwai K (2005) Multiple roles of Rbx1 in the VBC-Cul2 ubiquitin ligase complex. Genes Cells 10:679–691

    Article  PubMed  CAS  Google Scholar 

  42. Fu H, Reis N, Lee Y, Glickman MH, Vierstra RD (2001) Subunit interaction maps for the regulatory particle of the 26S proteasome and the COP9 signalosome. EMBO J 20:7096–7107

    Article  PubMed  CAS  Google Scholar 

  43. Sakata E, Yamaguchi Y, Miyauchi Y, Iwai K, Chiba T, Saeki Y, Matsuda N, Tanaka K, Kato K (2007) Direct interactions between NEDD8 and ubiquitin E2 conjugating enzymes upregulate cullin-based E3 ligase activity. Nat Struct Mol Biol 14:167–168

    Article  PubMed  CAS  Google Scholar 

  44. Carrano AC, Eytan E, Hershko A, Pagano M (1999) SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol 1:193–199

    Article  PubMed  CAS  Google Scholar 

  45. Yu HG, Ai YW, Yu LL, Zhou XD, Liu J, Li JH, Xu XM, Liu S, Chen J, Liu F, Qi YL, Deng Q, Cao J, Liu SQ, Luo HS, Yu JP (2007) Phosphoinositide 3-kinase/Akt pathway plays an important role in chemoresistance of gastric cancer cells against etoposide and doxorubicin induced cell death. Int J Cancer 122:433–443

    Article  Google Scholar 

  46. Kamura T, Hara T, Kotoshiba S, Yada M, Ishida N, Imaki H, Hatakeyama S, Nakayama K, Nakayama KI (2003) Degradation of p57Kip2 mediated by SCFSkp2-dependent ubiquitylation. Proc Natl Acad Sci USA 100:10231–10236

    Article  PubMed  CAS  Google Scholar 

  47. Vlachos P, Nyman U, Hajji N, Joseph B (2007) The cell cycle inhibitor p57(Kip2) promotes cell death via the mitochondrial apoptotic pathway. Cell Death Differ 14:1497–1507

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was in part funded by a grant from the German Israel Foundation for Scientific Research and Development and from the Deutsche Forschungsgemeinschaft to W.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Dubiel.

Additional information

Bettina K. J. Hetfeld and Andreas Peth contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hetfeld, B.K.J., Peth, A., Sun, XM. et al. The COP9 signalosome-mediated deneddylation is stimulated by caspases during apoptosis. Apoptosis 13, 187–195 (2008). https://doi.org/10.1007/s10495-007-0164-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-007-0164-7

Keywords

Navigation