Skip to main content
Log in

Absence of Bax switched MG132-induced apoptosis to non-apoptotic cell death that could be suppressed by transcriptional or translational inhibition

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Targeting to the ubiquitin proteasome degradation pathway has become a promising approach for treating cancer. Previous studies showed that inhibition of the proteasome can induce apoptosis in various cancer cells. However, whether and how the inhibition of the proteasome induces other forms of cell death is not quite known. We previously showed that proteasome inhibitors including MG132 and Bortezomib could induce apoptosis in a Bax- and caspase-dependent way. In the present study, we found that in the absence of Bax and caspase activation, inhibition of the proteasome could also kill cancer cells by an alternative, non-apoptotic form of cell death. We further demonstrated that proteasome inhibitors, such as MG132, could induce intracellular accumulation of polyubiquitinated proteins and extensive cellular vacuolization likely due to ER stress. Translational or transcriptional inhibitors suppressed MG132-induced polyubiquitinated protein accumulation, and in turn inhibited MG132-induced ER stress, cellular vacuolization and cell death. These findings thus suggested that non-apoptotic cell death was resulted from misfolded protein accumulation and ER stress. Furthermore, our study indicated that proteasome inhibitors could be favorable chemotherapeutic agents because they could induce non-apoptotic cell death in addition to apoptosis, which could overcome resistance due to compromised apoptotic machinery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Reference

  1. Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    Article  PubMed  CAS  Google Scholar 

  2. Johnston JA, Ward CL, Kopito RR (1998) Aggresomes: a cellular response to misfolded proteins. J Cell Biol 143(7):1883–1898

    Article  PubMed  CAS  Google Scholar 

  3. Brodsky JL, McCracken AA (1999) ER protein quality control and proteasome-mediated protein degradation. Semin Cell Dev Biol 10(5):507–513

    Article  PubMed  CAS  Google Scholar 

  4. Schroder M, Kaufman RJ (2005) The Mammalian unfolded protein response. Annu Rev Biochem 74:739–789

    Article  PubMed  Google Scholar 

  5. Harding HP et al (2002) Transcriptional and translational control in the Mammalian unfolded protein response. Annu Rev Cell Dev Biol 18:575–599

    Article  PubMed  CAS  Google Scholar 

  6. Rao RV, Ellerby HM, Bredesen DE (2004) Coupling endoplasmic reticulum stress to the cell death program. Cell Death Differ 11(4):372–380

    Article  PubMed  CAS  Google Scholar 

  7. Breckenridge DG et al (2003) Regulation of apoptosis by endoplasmic reticulum pathways. Oncogene 22(53):8608–8618

    Article  PubMed  CAS  Google Scholar 

  8. Ding WX et al (2004) Bid-dependent generation of oxygen radicals promotes death receptor activation-induced apoptosis in murine hepatocytes. Hepatology 40(2):403–413

    Article  PubMed  CAS  Google Scholar 

  9. Coultas L, Strasser A (2003) The role of the Bcl-2 protein family in cancer. Semin Cancer Biol 13(2):115–123

    Article  PubMed  CAS  Google Scholar 

  10. Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116(2):205–219

    Article  PubMed  CAS  Google Scholar 

  11. Scorrano L, Korsmeyer SJ (2003) Mechanisms of cytochrome c release by proapoptotic BCL-2 family members. Biochem Biophys Res Commun 304(3):437–444

    Article  PubMed  CAS  Google Scholar 

  12. Mullauer L et al (2001) Mutations in apoptosis genes: a pathogenetic factor for human disease. Mutat Res 488(3):211–231

    Article  PubMed  CAS  Google Scholar 

  13. Galluzzi L et al (2007) Cell death modalities: classification and pathophysiological implications. Cell Death Differ 14(7):1237–1243

    Article  PubMed  CAS  Google Scholar 

  14. Klionsky DJ, Cuervo AM, Seglen PO (2007) Methods for monitoring autophagy from yeast to human. Autophagy 3(3):181–206

    PubMed  CAS  Google Scholar 

  15. Bursch W (2001) The autophagosomal-lysosomal compartment in programmed cell death. Cell Death Differ 8(6):569–581

    Article  PubMed  CAS  Google Scholar 

  16. Leist M, Jaattela M (2001) Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol 2(8):589–598

    Article  PubMed  CAS  Google Scholar 

  17. Edinger AL, Thompson CB (2004) Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol 16(6):663–669

    Article  PubMed  CAS  Google Scholar 

  18. Yu L et al (2004) Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science 304(5676):1500–1502

    Article  PubMed  CAS  Google Scholar 

  19. Shimizu S et al (2004) Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol 6(12):1221–1228

    Article  PubMed  CAS  Google Scholar 

  20. Pyo JO et al (2005) Essential roles of Atg5 and FADD in autophagic cell death: dissection of autophagic cell death into vacuole formation and cell death. J Biol Chem 280(21):20722–20729

    Article  PubMed  CAS  Google Scholar 

  21. Boya P et al (2005) Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol 25(3):1025–1040

    Article  PubMed  CAS  Google Scholar 

  22. Lum JJ et al (2005) Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120(2):237–248

    Article  PubMed  CAS  Google Scholar 

  23. Cusack JC Jr et al (2006) NPI-0052 enhances tumoricidal response to conventional cancer therapy in a colon cancer model. Clin Cancer Res 12(22):6758–6764

    Article  PubMed  CAS  Google Scholar 

  24. Zong WX, Thompson CB (2006) Necrotic death as a cell fate. Genes Dev 20(1):1–15

    Article  PubMed  CAS  Google Scholar 

  25. Zong WX et al (2004) Alkylating DNA damage stimulates a regulated form of necrotic cell death. Genes Dev 18(11):1272–1282

    Article  PubMed  CAS  Google Scholar 

  26. Li YZ et al (1999) Release of mitochondrial cytochrome C in both apoptosis and necrosis induced by beta-lapachone in human carcinoma cells. Mol Med 5(4):232–239

    PubMed  Google Scholar 

  27. Salomon AR et al (2000) Understanding and exploiting the mechanistic basis for selectivity of polyketide inhibitors of F(0)F(1)-ATPase. Proc Natl Acad Sci U S A 97(26):14766–14771

    Article  PubMed  CAS  Google Scholar 

  28. Bai X et al (2003) Honokiol, a small molecular weight natural product, inhibits angiogenesis in vitro and tumor growth in vivo. J Biol Chem 278(37):35501–35507

    Article  PubMed  CAS  Google Scholar 

  29. Sperandio S, de Belle I, Bredesen DE (2000) An alternative, nonapoptotic form of programmed cell death. Proc Natl Acad Sci U S A 97(26):14376–14381

    Article  PubMed  CAS  Google Scholar 

  30. Castro-Obregon S et al (2002) A ligand-receptor pair that triggers a non-apoptotic form of programmed cell death. Cell Death Differ 9(8):807–817

    Article  PubMed  CAS  Google Scholar 

  31. Fribley A, Zeng Q, Wang CY (2004) Proteasome inhibitor PS-341 induces apoptosis through induction of endoplasmic reticulum stress-reactive oxygen species in head and neck squamous cell carcinoma cells. Mol Cell Biol 24(22):9695–9704

    Article  PubMed  CAS  Google Scholar 

  32. Chauhan D et al (2005) A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from Bortezomib. Cancer Cell 8(5):407–419

    Article  PubMed  CAS  Google Scholar 

  33. Nawrocki ST et al (2005) Bortezomib sensitizes pancreatic cancer cells to endoplasmic reticulum stress-mediated apoptosis. Cancer Res 65(24):11658–11666

    Article  PubMed  CAS  Google Scholar 

  34. Ding WX et al (2007) A coordinated action of Bax, PUMA, and p53 promotes MG132-induced mitochondria activation and apoptosis in colon cancer cells. Mol Cancer Ther 6(3):1062–1069

    Article  PubMed  CAS  Google Scholar 

  35. Zhang L et al (2000) Role of BAX in the apoptotic response to anticancer agents. Science 290(5493):989–992

    Article  PubMed  CAS  Google Scholar 

  36. Zhao Y et al (2003) Bid activates multiple mitochondrial apoptotic mechanisms in primary hepatocytes after death receptor engagement. Gastroenterology 125(3):854–867

    Article  PubMed  CAS  Google Scholar 

  37. Ding WX et al (2007) Differential effects of endoplasmic reticulum stress-induced autophagy on cell survival. J Biol Chem 282(7):4702–4710

    Article  PubMed  CAS  Google Scholar 

  38. Yu J et al (2003) Differential apoptotic response to the proteasome inhibitor Bortezomib [VELCADE, PS-341] in Bax-deficient and p21-deficient colon cancer cells. Cancer Biol Ther 2(6):694–699

    PubMed  CAS  Google Scholar 

  39. Vaux DL, Whitney D, Weissman IL (1996) Activation of physiological cell death mechanisms by a necrosis-causing agent. Microsc Res Tech 34(3):259–266

    Article  PubMed  CAS  Google Scholar 

  40. Nawrocki ST et al (2006) Aggresome disruption: a novel strategy to enhance bortezomib-induced apoptosis in pancreatic cancer cells. Cancer Res 66(7):3773–3781

    Article  PubMed  CAS  Google Scholar 

  41. Degterev A et al (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1(2):112–119

    Article  PubMed  CAS  Google Scholar 

  42. Kim JS, Qian T, Lemasters JJ (2003) Mitochondrial permeability transition in the switch from necrotic to apoptotic cell death in ischemic rat hepatocytes. Gastroenterology 124(2):494–503

    Article  PubMed  CAS  Google Scholar 

  43. Richardson PG (2003) Bortezomib: a novel therapy approved for multiple myeloma. Clin Adv Hematol Oncol 1(10):596–600

    PubMed  Google Scholar 

  44. Adams J (2004) The development of proteasome inhibitors as anticancer drugs. Cancer Cell 5(5):417–421

    Article  PubMed  CAS  Google Scholar 

  45. Dewson G et al (2003) Conformational change and mitochondrial translocation of Bax accompany proteasome inhibitor-induced apoptosis of chronic lymphocytic leukemic cells. Oncogene 22(17):2643–2654

    Article  PubMed  CAS  Google Scholar 

  46. Ding WX et al (2007) Linking of autophagy to Ubiquitin-Proteasome system is important for the regulation of endoplasmic reticulum stress and cell viability. Am J Pathol 171(2):513–524

    Article  PubMed  CAS  Google Scholar 

  47. Strauss SJ et al (2007) The proteasome inhibitor bortezomib acts independently of p53 and induces cell death via apoptosis and mitotic catastrophe in B-cell lymphoma cell lines. Cancer Res 67(6):2783–2790

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Benjamin S Mantell and Nicholus Maurice for critical reading of the manuscript. The authors are indebted to Dr. Bert Vogelstein (Johns Hopkins University) for the HCT116 Bax-positive and Bax-negative cell lines. Wen-Xing Ding is an American Liver Foundation Scholar. Xiao-Ming Yin was in part supported by the NIH funds (CA083817, NS045252) &CA11145).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen-Xing Ding or Xiao-Ming Yin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, WX., Ni, HM. & Yin, XM. Absence of Bax switched MG132-induced apoptosis to non-apoptotic cell death that could be suppressed by transcriptional or translational inhibition. Apoptosis 12, 2233–2244 (2007). https://doi.org/10.1007/s10495-007-0142-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-007-0142-0

Keywords

Navigation