Skip to main content

Advertisement

Log in

hCG treatment raises H2O2 levels and induces germ cell apoptosis in rat testis

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The clinical significance of exogenous hCG treatment is to stimulate steroidogenesis and spermatogenesis in the testis. However, the pathogenesis of detrimental effects on the testis arising out of chronic hCG treatment is yet to be clearly ascertained. In the present study we have shown that hCG treatment (100 IU/day) to rats for 30 days raises testicular oxidative stress leading to germ cell apoptosis and impairment of spermatogenesis. The treatment raises testicular H2O2 levels along with increase in lipid peroxidation and concomitant decrease in the enzymatic antioxidant activities like superoxide dismutase, catalase and glutathione-s-transferase. The rise in the number of apoptotic germ cells was associated with up regulation of Fas protein expression and caspase-3 activity in the testis. However, serum testosterone which was elevated by 15 days of hCG treatment declined to pretreatment levels by 30 days. No significant alteration in serum gonadotropins was observed. The above findings indicate that the pathogenesis of deleterious effects following chronic hCG treatment is due to increase in testicular oxidative stress with high H2O2 availability leading to apoptosis among germ cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kaleva M, Arsalo A, Louhimo I et al (1996) Treatment with human chorionic gonadotropins for cryptorchidism: clinical and histological effects. Intl J Androl 19:293–298

    CAS  Google Scholar 

  2. Pyorala S, Hottunen N-P, Uhari M (1995) A review and meta-analysis of hormonal treatment of cryptorchidism. J Clin Endocrinol Metab 80:2795–2799

    Article  PubMed  CAS  Google Scholar 

  3. Miayagawa Y, Tsujimura A, Matsumiya K et al (2005) Outcome of gonadotropins therapy for male hypogonadotropic hypogonadism at university affiliated male infertility centers: A 30-year retrospective study. J Urol 173:2072–2075

    Article  CAS  Google Scholar 

  4. Zorn B, Pfeifer M, Virant-Klun I, Meden-Vrtovec H (2005) Intracytoplasmic sperm injection as a complement to gonadotrophin treatment in infertile men with hypogonadotrophic hypogonadism. Intl J Androl 28:202–207

    Article  Google Scholar 

  5. Giannopoulos MF, Vlachakis IG, Charissis GC (2001) 13 years’ experience with the combined hormonal therapy of cryptorchidism. Horm Res 55:33–37

    Article  PubMed  CAS  Google Scholar 

  6. Depenbusch M, von Eckardstein S, Simoni M, Nieschlag E (2002) Maintenance of spermatogenesis in hypogonadotropic hypogonadal men with human chorionic gonadotropin alone. Eur J Endocrinol 147:617–624

    Article  PubMed  CAS  Google Scholar 

  7. Hjertkvist M, Bergh A (1993) The time response and the magnitude of hCG induced vascular changes are different in scrotal and abdominal testes. Intl J Androl 16:63–70

    CAS  Google Scholar 

  8. Kaleva M, Arsalo A, Louhimo I et al (1996) Treatment with human chorionic gonadotropin for cryptorchidism:clinical and histological effects. Intl J Androl 19:293–298

    CAS  Google Scholar 

  9. Bergh A, Widmark A, Damber J-E, Cajander S (1986) Are leukocytes involved in the human chorionic gonadotropins-induced increase in testicular vascular permeability? Endocrinol 119:586–590

    CAS  Google Scholar 

  10. Kerr JB, Sharpe RM (1989) Focal disruption of spermatogenesis in the testis of adult rats after a single administration of human chorionic gonadotropins. Cell Tiss Res 257:163–169

    Article  CAS  Google Scholar 

  11. Dunkel L, Taskinen S, Hovatta O, Tilly JL, Wikstrom S (1997) Germ cell apoptosis after treatment of cryptorchidism with human chorionic gonadotropin is associated with impaired reproductive function in the adult. J Clin Invest 100:2341–2346

    PubMed  CAS  Google Scholar 

  12. Heiskanen P, Billig H, Topari J et al (1996) Apoptotic cell death in the normal and cryptorchid human testis: The effect of human chorionic gonadotropins on testicular cell survival. Paediatr Res 40:351–356

    Article  CAS  Google Scholar 

  13. Sinha Hikim AP, Rajavashisth TB, Sinha Hikim I et al (1997) Significance of apoptosis in the temporal and stage specific loss of germ cells in the adult rat after gonadotropin deprivation. Biol Reprod 57:1193–1201

    Article  PubMed  CAS  Google Scholar 

  14. Woolveridge I, de Boer-Brower M, Taylor MF, Teerds KJ, Wu FC, Morris ID (1999) Apoptosis in the rat spermatogenic epithelium following androgen withdrawal: changes in apoptosis related genes. Biol Reprod 60:461–470

    Article  PubMed  CAS  Google Scholar 

  15. Chaki SP, Misro MM, Ghosh D, Gautam DK, Srinivas M (2005) Apoptosis and cell removal in cryptorchid rat testis. Apoptosis 10:395–405

    Article  PubMed  CAS  Google Scholar 

  16. Chaki SP, Misro MM, Gautam DK, Kaushik M, Ghosh D, Chainy GBN (2006) Estradiol treatment induces testicular oxidative stress and germ cell apoptosis in rats. Apoptosis 11:1427–1437

    Article  PubMed  CAS  Google Scholar 

  17. Gautam DK, Misro MM, Chaki SP, Sehgal N (2006) H2O2 at physiological concentrations modulates Leydig cell function inducing oxidative stress and apoptosis. Apoptosis 11:39–46

    Article  PubMed  CAS  Google Scholar 

  18. Kierszenbaum AL (2001) Apoptosis during spermatogenesis: the thrill of being alive. Mol Reprod Dev 58:1–3

    Article  PubMed  CAS  Google Scholar 

  19. Karnovsky MJ (1965) A formaldehyde-glutraldehyde fixative of high osmolality for use in electron microscopy. J Cell Biol 27:137A

    Google Scholar 

  20. Lowry OH, Rosebrough NJ, Farr AH, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  21. Das K, Samantha L, Chainy GBN (2000) A modified spectrophotometric assay of superoxide dismutase using nitrite formation of superoxide radicals. Ind J Biochem Biophys 37:201–204

    CAS  Google Scholar 

  22. Aebi H (1984) Catalase in vitro. Meth Enzymol 105:121–126

    Article  PubMed  CAS  Google Scholar 

  23. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione-s-transferases. J Biol Chem 249:713–739

    Google Scholar 

  24. Pick E, Keisari (1981) Superoxide anion and H2O2 production by chemically elicted perinatal macrophage. Induction by multiple nonphagocytic stimuli. Cell Immunol 59:301–318

    Article  PubMed  CAS  Google Scholar 

  25. Abraham GE (1974) Radioimmunoassay of steroids in biological fluids. Clin Biochem 7:193–201

    Article  PubMed  CAS  Google Scholar 

  26. Das D, Das A (1998) Analysis of variance. In: Das A (ed) Statistics in biology and psychology. Academic Press, Calcutta, pp 250–282

    Google Scholar 

  27. Andreis PG, Cavallini LK, Malendowicz LK et al (1989) Morphological and functional responses of rat Leydig cells to prolonged treatment with human chorionic gonadotropins. J Submicrosc Cytol Pathol 21:703–711

    PubMed  CAS  Google Scholar 

  28. Bergh A, Widmark A, Damber J-E, Cajander S (1986) Are leucocytes involved in the human chorionic gonadotropin-induced increase in testicular vascular permeability? Endocrinol 119:586–590

    Article  CAS  Google Scholar 

  29. Bergh A, Rooth P, Widmark A, Damber JE (1987) Treatment of rats with hCG induces inflammation-like changes in the testicular microcirculation. J Reprod Fertil 79:135–143

    Article  PubMed  CAS  Google Scholar 

  30. Rodriguez I, Ody C, Araki K, Garcia I, Vassalli P (1997) An early and massive wave germinal cell apoptosis is required for the development of functional spermatogenesis. EMBO J 16:2262–2270

    Article  PubMed  CAS  Google Scholar 

  31. Lee J, Richburg JH, Shipp EB, Meistrich ML, Boekelheide K (1999) The Fas system, a regulator of testicular germ cell apoptosis, is differentially up-regulated in Sertoli cell versus germ cell injury of the testis. Endocrinol 140:852–858

    Article  CAS  Google Scholar 

  32. Lee Y, Sinha Hikim AP, Swerdloff RS et al (1999) Single exposure to heat induces stage specific germ cell apoptosis in rats: role of intra-testicular testosterone on stage specificity. Endocrinol 140:1709–1717

    Article  Google Scholar 

  33. Meistrich ML (1993) Effects of chemotherapy and radiotherapy on spermatogenesis. Eur Urol 23:136–141

    PubMed  CAS  Google Scholar 

  34. Woolveridge I, de Boer-Brower M, Taylor MF et al (1999) Apoptosis in the rat spermatogenic epithelium following androgen withdrawal: changes in apoptosis-related genes. Biol Reprod 60:461–470

    Article  PubMed  CAS  Google Scholar 

  35. Tapanainen JS, Tilly JL, Vinko KK, Hsueh AJW (1993) Hormonal control of apoptotic cell death in the testis: gonadotropins and androgens as testicular cell survival factors. Mol Endrocrinol 7:643–650

    Article  CAS  Google Scholar 

  36. Billig H, Furuta I, Rivier C, Tapanainen J, Parvinen M, Hsueh AJW (1995) Apoptosis in testis germ cells: developmental changes in gonadotropin dependence and localization in selective tubule stages. Endocrinol 136:5–12

    Article  CAS  Google Scholar 

  37. Lee J, Richburg JH, Younkin SC, Boekelheide K (1997) The Fas system is a key regulator of germ cell apoptosis in the testis. Endocrinol 138:2081–2088

    Article  CAS  Google Scholar 

  38. D’abrizio P, Baldini E, Russo PF et al (2004) Ontogenesis and cell specific localization of Fas ligand expression in the rat testis. Intl J Androl 27:304–310

    Article  CAS  Google Scholar 

  39. Scaffidi C, Fulda S, Srinivasan A et al (1998) Two CD95 (APO-1/Fas) signaling pathways. EMBO J 17:1675–1678

    Article  PubMed  CAS  Google Scholar 

  40. Sharpe RM (1976) hCG induced decrease in the availability of rat testis receptors. Nature 264:644–646

    Article  PubMed  CAS  Google Scholar 

  41. Hsueh AJ, Dufau ML, Catt KJ (1976) Regulation of lutenizing hormone receptors in testicular interstitial cells by gonadotropin. Biochem Biophys Res Commun 72:1145–1152

    Article  PubMed  CAS  Google Scholar 

  42. Risbridger GP, Robertson DM, de Kretser DM (1982) The effect of chronic human chorionic gonadotropin treatment on Leydig cell function. Endocrinol 110:138–145

    Article  CAS  Google Scholar 

  43. Ikeda M, Kodama H, Fukuda J et al (1999) Role of radical oxygen species in rat testicular germ cell apoptosis induced by heat stress. Biol Reprod 61:393–399

    Article  PubMed  CAS  Google Scholar 

  44. Chaki SP, Ghosh D, Misro MM (2003) Simultaneous increase in germ cell apoptosis and oxidative stress under acute unilateral testicular ischaemia in rats. Int J Androl 26:319–328

    Article  PubMed  CAS  Google Scholar 

  45. Aitkin RJ, Buckingham D, Harkiss D (1993) Use of xanthine oxidase free radical generating system to investigate the cytotoxic effects of reactive oxygen species on human spermatozoa. J Reprod Fertil 97:441–450

    Article  Google Scholar 

  46. Peltola V, Huhtaniemi I, Ahutopa M (1992) Antioxidant enzyme activity in the maturing rat testis. J Androl 13:450–455

    PubMed  CAS  Google Scholar 

  47. Bouche F, Fouchard MH, Jgou B (1993) Antioxidant system in rat testicular cells. FEBS Lett 349:392–396

    Article  Google Scholar 

Download references

Acknowledgment

Senior Research Fellowship (SRF) to Dinesh Kumar Gautam from Council of Scientific and Industrial Research (CSIR) New Delhi, India is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Misro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gautam, D.K., Misro, M.M., Chaki, S.P. et al. hCG treatment raises H2O2 levels and induces germ cell apoptosis in rat testis. Apoptosis 12, 1173–1182 (2007). https://doi.org/10.1007/s10495-007-0060-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-007-0060-1

Keywords

Navigation