Skip to main content

Advertisement

Log in

Calreticulin: Raising awareness of apoptosis

  • Published:
Apoptosis Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Sauter B, Albert ML, Francisco L et al (2000) Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J Exp Med 191:423–434

    Article  PubMed  CAS  Google Scholar 

  2. Casares N, Pequignot MO, Tesniere A et al (2005) Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J Exp Med 202:1691–1701

    Article  PubMed  CAS  Google Scholar 

  3. Pinkoski MJ, Waterhouse NJ, Green DR (2006) Mitochondria, apoptosis and autoimmunity. Curr Dir Autoimmun 9:55–73

    PubMed  Google Scholar 

  4. Obeid M, Tesniere A, Ghiringhelli F et al (2007) Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 13:54–61

    Article  PubMed  CAS  Google Scholar 

  5. Porcellini S, Traggiai F, Schenk U et al (2006) Regulation of peripheral T cell activation by calreticulin. J Exp Med 203:461–471

    Article  PubMed  CAS  Google Scholar 

  6. Dupuis M, Schaerer E, Krause KH, Tschopp J (1993) The calcium-binding protein calreticulin is a major constituent of lytic granules in cytolytic T lymphocytes. J Exp Med 177:1–7

    Article  PubMed  CAS  Google Scholar 

  7. Andrin C, Pinkoski MJ, Burns K et al (1998) Interaction between a Ca2+-binding protein calreticulin and perforin, a component of the cytotoxic T-cell granules. Biochemistry 37:10386–10394

    Article  PubMed  CAS  Google Scholar 

  8. Sipione S, Ewen C, Shostak I, Michalak M, Bleackley RC (2005) Impaired cytolytic activity in calreticulin-deficient CTLs. J Immunol 174:3212–3219

    PubMed  CAS  Google Scholar 

  9. Ogden CA, Elkon KB (2006) Role of complement and other innate immune mechanisms in the removal of apoptotic cells. Curr Dir Autoimmun 9:120–142

    PubMed  Google Scholar 

  10. Gardai SJ, Bratton DL, Ogden CA, Henson PM (2006) Recognition ligands on apoptotic cells: a perspective. J Leukoc Biol 79:896–903

    Article  PubMed  CAS  Google Scholar 

  11. Albert ML, Sauter B, Bhardwaj N (1998) Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 392:86–89

    Article  PubMed  CAS  Google Scholar 

  12. Zeng Y, Chen X, Larmonier N et al (2006) Natural killer cells play a key role in the antitumor immunity generated by chaperone-rich cell lysate vaccination. Int J Can 119:2624–2631

    Article  CAS  Google Scholar 

  13. Basu S, Binder RJ, Suto R, Anderson KM, Srivastava PK (2000) Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int Immunol 12:1539–1546

    Article  PubMed  CAS  Google Scholar 

  14. Basu S, Binder RJ, Ramalingam T, Srivastava PK (2001) CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity 14:303–313

    Article  PubMed  CAS  Google Scholar 

  15. Gregory CD, Brown SB (2005) Apoptosis: eating sensibly. Nat Cell Biol 7:1161–1163

    Article  PubMed  Google Scholar 

  16. Henson PM, Bratton DL, Fadok VA (2001) The phosphatidylserine receptor: a crucial molecular switch? Nat Rev Mol Cell Biol 2:627–633

    Article  PubMed  CAS  Google Scholar 

  17. Boatright KM, Salvesen GS (2003) Mechanisms of caspase activation. Curr Opin Cell Biol 15:725–731

    Article  PubMed  CAS  Google Scholar 

  18. Wolf BB, Schuler M, Echeverri F, Green DR (1999) Caspase-3 is the primary activator of apoptotic DNA fragmentation via DNA fragmentation factor-45/inhibitor of caspase-activated DNase inactivation. J Biol Chem 274:30651–30656

    Article  PubMed  CAS  Google Scholar 

  19. Slee EA, Adrain C, Martin SJ (2001) Executioner caspase-3, -6, and -7 perform distinct, non-redundant roles during the demolition phase of apoptosis. J Biol Chem 276:7320–7326

    Article  PubMed  CAS  Google Scholar 

  20. Ekert PG, Jabbour AM, Manoharan A et al (2006) Cell death provoked by loss of interleukin-3 signaling is independent of Bad, Bim, and PI3 kinase, but depends in part on Puma. Blood 108:1461–1468

    Article  PubMed  CAS  Google Scholar 

  21. Walczak H, Krammer PH (2000) The CD95 (APO-1/Fas) and the TRAIL (APO-2L) apoptosis systems. Exp Cell Res 256:58–66

    Article  PubMed  CAS  Google Scholar 

  22. Waterhouse NJ, Sutton VR, Sedelies KA et al (2006) Cytotoxic T lymphocyte-induced killing in the absence of granzymes A and B is unique and distinct from both apoptosis and perforin-dependent lysis. J Cell Biol 173:133–144

    Article  PubMed  CAS  Google Scholar 

  23. Rauch F, Prud’homme J, Arabian A, Dedhar S, St-Arnaud R (2000) Heart, brain, and body wall defects in mice lacking calreticulin. Exp Cell Res 256:105–111

    Article  PubMed  CAS  Google Scholar 

  24. Kinchen JM, Cabello J, Klingele D et al (2005) Two pathways converge at CED-10 to mediate actin rearrangement and corpse removal in C. elegans. Nature 434:93– 99

    Article  PubMed  CAS  Google Scholar 

  25. Kim R, Emi M, Tanabe K (2005) Cancer cell immune escape and tumor progression by exploitation of anti-inflammatory and pro-inflammatory responses. Cancer Biol Ther 4:924– 933

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nigel J. Waterhouse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waterhouse, N.J., Pinkoski, M.J. Calreticulin: Raising awareness of apoptosis. Apoptosis 12, 631–634 (2007). https://doi.org/10.1007/s10495-007-0057-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-007-0057-9

Keywords

Navigation