Skip to main content
Log in

Caspase-independent death of human osteosarcoma cells by flavonoids is driven by p53-mediated mitochondrial stress and nuclear translocation of AIF and endonuclease G

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Flavonoids have antioxidant and antitumor promoting effects. Rhus verniciflua Stokes (RVS) is a flavonoid-rich herbal medicine that has long been used in Korea as both a food additive and antitumor agent. It was previous reported that a purified flavonoid fraction prepared from RVS, herein named RCMF (the RVS chloroform-methanol fraction), inhibited the proliferation and induced apoptosis in human osteosarcoma (HOS) cells. This study examined the mechanisms involved in the RCMF-mediated apoptosis in HOS cells. RCMF was shown to be capable of inducing apoptosis in HOS cells by inducing p53 in the cells resulting in the decrease in Bcl-2 level, activation of Bax, and cytoplasmic release of cytochrome c, which led to the translocation of apoptosis-inducing factor (AIF) and endonuclease G (EndoG) into the nucleus. However, the RCMF-induced apoptosis was suppressed by transfecting the cells with antisense p53 oligonucleotides but not by treating them with a MAPK or caspase inhibitor. This suppression occurred through the regulation of Bcl-2 members as well as by preventing the nuclear translocation of the mitochondrial apoptogenic factors. Overall, it appears that p53-mediated mitochondrial stress and the nuclear translocation of AIF and EndoG are mainly required for the apoptosis induced by RCMF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lin HH, Huang HP, Huang CC, Chen JH, Wang CJ (2005) Hibiscus polyphenol-rich extract induces apoptosis in human gastric carcinoma cells via p53 phosphorylation and p38 MAPK/FasL cascade pathway. Mol Carcinog 43:86–99

    Article  PubMed  CAS  Google Scholar 

  2. Farr DR (1997) Functional foods. Cancer Lett 114:59–63

    Article  PubMed  CAS  Google Scholar 

  3. Pezutto JM (1997) Plant-derived anticancer agents. Biochem Pharmacol 53:121–133

    Article  Google Scholar 

  4. Paschka AG, Butler R, Young CYF (1998) Induction of apoptosis in prostate cancer cell lines by the green tea component, (–)-epigallocatechin-3-gallate. Cancer Lett 130:1–7

    Article  PubMed  CAS  Google Scholar 

  5. Mukherjee AK, Basu S, Sarkar N, Ghosh AC (2001) Advances in cancer therapy with plant-based natural products. Curr Med Chem 8:1467–1486

    PubMed  CAS  Google Scholar 

  6. Smets LA (1994) Programmed cell death (apoptosis) and response to anti-cancer drugs. Anti-Cancer Drugs 5:3–9

    Article  PubMed  CAS  Google Scholar 

  7. Gamet-Payrastre L, Manenti S, Gratacap MP, Tulliez J, Chap H, Payrastre B (1999) Flavonoids and the inhibition of PKC and PI3-kinase. Gen Pharmacol 32:279–286

    Article  PubMed  CAS  Google Scholar 

  8. Formica JV, Regelson W (1995) Review of the biology of quercetin and related bioflavonoids. Food Chem Toxicol 33:1061–1080

    Article  PubMed  CAS  Google Scholar 

  9. Plaumann B, Fritsche M, Rimpler H, Brandner G, Hess RD (1996) Flavonoids activate wild-type p53. Oncogene 13:1605–1614

    PubMed  CAS  Google Scholar 

  10. Caltagirone S, Rossi C, Poggi A, Ranelletti FO, Natali PG, Brunetti M, Aiello FB, Piantelli M (2000) Flavonoids apigenin and quercetin inhibit melanoma growth and metastatic potential. Int J Cancer 87:595–600

    Article  PubMed  Google Scholar 

  11. Yang EB, Zhang K, Cheng LY, Mack P (1998) Butein, a specific protein tyrosine kinase inhibitor. Biochem Biophys Res Commun 245:435–438

    Article  PubMed  CAS  Google Scholar 

  12. Lee JC, Kim J, Park JK, Chung GH, Jang YS (2003) The anti-oxidant, rather than pro-oxidant, activities of quercetin on normal cells: Quercetin protects mouse thymocytes from glucose oxidase-mediated apoptosis. Exp Cell Res 291:386–397

    Article  PubMed  CAS  Google Scholar 

  13. Son YO, Lee KY, Lee JC, Jang HS, Kim JG, Jeon YM, Jang YS (2005) Selective antiproliferative and apoptotic effects of flavonoids purified from Rhus verniciflua stokes on normal versus transformed hepatic cell lines. Toxicol Lett 155:115–125

    Article  PubMed  CAS  Google Scholar 

  14. Lee JC, Kim J, Lim KT, Yang MS, Jang YS (2001) Ethanol eluted extract of Rhus verniciflua stokes showed both antioxidant and cytotoxic effects on mouse thymocytes depending on the dose and time of the treatment. J Biochem Mol Biol 34:250–258

    CAS  Google Scholar 

  15. Lee JC, Lim KT, Jang YS (2002) Identification of Rhus verniciflua stokes compounds that exhibit free radical scavenging and anti-apoptotic properties. Biochim Biophys Acta 1570:181–191

    PubMed  CAS  Google Scholar 

  16. Lee JC, Lee KY, Kim J, Na CS, Jung NC, Chung GH, Jang YS (2004) Extract from Rhus verniciflua stokes is capable of inhibiting the growth of human lymphoma cells. Food Chem Toxicol 42:1383–1388

    Article  PubMed  CAS  Google Scholar 

  17. Jang HS, Kook SH, Son YO, Kim JG, Jeon YM, Jang YS, Choi KC, Kim J, Han SK, Lee KY, Park BK, Cho NP, Lee JC (2005) Flavonoids purified from Rhus verniciflua stokes actively inhibit cell growth and induce apoptosis in human osteosarcoma cells. Biochim Biophys Acta 1726:309–316

    PubMed  CAS  Google Scholar 

  18. Lefeuvre M, Amjaad W, Goldberg M, Standislawski L (2005) TEGDMA induces mitochondrial damage and oxidative stress in human gingival fibroblasts. Biomaterials 26:5130–5137

    Article  PubMed  CAS  Google Scholar 

  19. Marques-Santos LF, Coqueiro VM, Rumjanek VM (2006) Cyclosporin A does not protect the disruption of the inner mitochondrial membrane potential induced by potassium ionophores in intact K562 cells. Cell Biol Int 30:197–204

    Article  PubMed  CAS  Google Scholar 

  20. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  21. Shimada K, Nakamura M, Ishida E, Kishi M, Konishi N (2003) Role of p38- and c-jun NH2-terminal kinase-mediated pathways in 2-methoxyestradiol-induced p53 induction and apoptosis. Carcinogenesis 24:1067–1075

    Article  PubMed  CAS  Google Scholar 

  22. Harris MH, Thompson CB (2000) The role of the Bcl-2 family in the regulation of outer mitochondrial membrane permeability. Cell Death Differ 7:1182–1191

    Article  PubMed  CAS  Google Scholar 

  23. Heath-Engel HM, Shore GC (2006) Mitochondrial membrane dynamics, cristae remodelling and apoptosis. Biochim Biophys Acta 1763:549–560

    Article  PubMed  CAS  Google Scholar 

  24. Ballif BA, Blenis J (2001) Molecular mechanisms mediating mammalian mitogen-activated protein kinase (MAPK) kinase (MEK)-MAPK cell survival signals. Cell Growth Differ 12:397–408

    PubMed  CAS  Google Scholar 

  25. Zanna C, Ghelli A, Porcelli AM, Martinuzzi A, Carelli V, Rugolo M (2005) Caspase-independent death of Leber's hereditary optic neuropathy cybrids is driven by energetic failure and mediated by AIF and Endonuclease G. Apoptosis 10:997–1007

    Article  PubMed  CAS  Google Scholar 

  26. Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM, Kroemer G (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441–446

    Article  PubMed  CAS  Google Scholar 

  27. Li LY, Luo X, Wang X (2001) Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412:95–99

    Article  PubMed  CAS  Google Scholar 

  28. Arnoult D, Gaume B, Karbowski M, Sharpe JC, Cecconi F, Youle RJ (2003) Mitochondrial release of AIF and EndoG requires caspase activation downstream of Bax/Bak-mediated permeabilization. EMBO J 22:4385–4399

    Article  PubMed  CAS  Google Scholar 

  29. Arnoult D, Karbowski M, Youle RJ (2003) Caspase inhibition prevents the mitochondrial release of apoptosis-inducing factor. Cell Death Differ 10:845–849

    Article  PubMed  CAS  Google Scholar 

  30. Miranda CL, Stevens JF, Helmrich A, Henderson MC, Rodriguez RJ, Yang YH, Deinzer ML, Barnes DW, Buhler DR (1999) Antiproliferative and cytotoxic effects of prenylated flavonoids from hops (Humulus lupulus) in human cancer cell lines. Food Chem Toxicol 37:271–285

    Article  PubMed  CAS  Google Scholar 

  31. Lowe SW, Ruley HE, Jacks T, Housman DE (1993) p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74:957–967

    Article  PubMed  CAS  Google Scholar 

  32. Muller M, Wilder S, Bannasch D, Israeli D, Lehlbach K, Li-Weber M, Friedman SL, Galle PR, Stremmel W, Oren M, Krammer PH (1998) p53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs. J Exp Med 188:2033–2045

    Article  PubMed  CAS  Google Scholar 

  33. Bernhard D, Schwaiger W, Crazzolara R, Tinhofer I, Csordas A (2003) Enhanced MTT-reducing activity under growth inhibition by resveratrol in CEM-C7H2 lymphocytic leukemia cells. Cancer Lett 195:193–199

    PubMed  CAS  Google Scholar 

  34. Gross A, McDonnell JM, Korsmeyer SJ (1999) BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13:1899–1911

    PubMed  CAS  Google Scholar 

  35. Nechushtan A, Smith CL, Lamensdorf I, Yoon SH, Youle RJ (2001) Bax and Bak coalesce into novel mitochondria-associated clusters during apoptosis. J Cell Biol 153:1265–1276

    Article  PubMed  CAS  Google Scholar 

  36. Whitmarsh AJ, Davis RJ (1996) Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways. J Mol Med 74:589–607

    Article  PubMed  CAS  Google Scholar 

  37. Hsu YL, Cho CY, Kuo PL, Huang YT, Lin CC (2006) Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone) induces apoptosis and cell cycle arrest in A549 cells through p53 accumulation via JNK-mediated phosphorylation at Serine 15 in vitro and in vivo. J Pharmacol Exp Ther 318:484–494

    Article  PubMed  CAS  Google Scholar 

  38. Keller D, Zeng X, Li X, Kapoor M, Iordanov MS, Taya Y, Lozano G, Magun B, Lu H (1999) The p38MAPK inhibitor SB203580 alleviates ultraviolet-induced phosphorylation at serine 389 but not serine 15 and activation of p53. Biochem Biophys Res Commun 261:464–471

    Article  PubMed  CAS  Google Scholar 

  39. Kang YH, Yi MJ, Kim MJ, Park MT, Bae S, Kang CM, Cho CK, Park IC, Park MJ, Rhee CH, Hong SI, Chung HY, Lee YS, Lee SJ (2004) Caspase-independent cell death by arsenic trioxide in human cervical cancer cells: reactive oxygen-mediated poly (ADP-ribose) polymerase-1 activation signals apoptosis-inducing factor release from mitochondria. Cancer Res 64:8960–8967

    Article  PubMed  CAS  Google Scholar 

  40. Lee YJ, Shacter E (1999) Oxidative stress inhibits apoptosis in human lymphoma cells. J Biol Chem 274:19792–19798

    Article  PubMed  CAS  Google Scholar 

  41. Eguchi Y, Shimizu S, Tsujimoto Y (1997) Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer Res 57:1835–1840

    PubMed  CAS  Google Scholar 

  42. Miyashita T, Reed JC (1995) Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80:293–299

    Article  PubMed  CAS  Google Scholar 

  43. Harris CC (1996) Structure and function of the p53 tumor suppressor gene: clues for rational cancer therapeutic strategies. J Natl Cancer Inst 88:1442–1455

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by Korea Research Foundation Grant endowed to RCBM in Chonbuk National University (KRF-2006-005-J03102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong-Chae Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kook, SH., Son, YO., Chung, SW. et al. Caspase-independent death of human osteosarcoma cells by flavonoids is driven by p53-mediated mitochondrial stress and nuclear translocation of AIF and endonuclease G. Apoptosis 12, 1289–1298 (2007). https://doi.org/10.1007/s10495-007-0056-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-007-0056-x

Keywords

Navigation