Skip to main content

Advertisement

Log in

Role of iNOS-derived reactive nitrogen species and resultant nitrative stress in leukocytes-induced cardiomyocyte apoptosis after myocardial ischemia/reperfusion

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Polymorphonuclear leukocyte (PMN) accumulation/activation has been implicated as a primary mechanism underlying MI/R injury. Recent studies have demonstrated that PMNs express inducible nitric oxide synthase (iNOS) and produce toxic reactive nitrogen species (RNS). However, the role of iNOS-derived reactive nitrogen species and resultant nitrative stress in PMN-induced cardiomyocyte apoptosis after MI/R remains unclear. Male adult rats were subjected to 30 min of myocardial ischemia followed by 5 h of reperfusion. Animals were randomized to receive one of the following treatments: MI/R+vehicle; MI/R+L-arginine; PMN depletion followed by MI/R+vehicle; PMN depletion followed by MI/R+L-arginine; MI/R+1400 W; MI/R+1400 W+L-arginine and MI/R+ FeTMPyP. Ischemia/reperfusion-induced and L-arginine-enhanced nitrative stress and cardiomyocyte apoptosis were determined. PMN depletion virtually abolished ischemia/reperfusion- induced PMN accumulation, attenuated ischemic/reperfusion-induced and L-arginine-enhanced nitrative stress, and reduced ischemic/reperfusion-induced and L-arginine-enhanced cardiomyocyte apoptosis (P values all <0.01). Pre-treatment with 1400 W, a highly selective iNOS inhibitor, had no effect on PMN accumulation in the ischemic/reperfused tissue. However, this treatment reduced ischemia/reperfusion-induced and L-arginine-enhanced nitrative stress and cardiomyocyte apoptosis to an extent that is comparable as that seen in PMN depletion group. Treatment with FeTMPyP, a peroxynitrite decomposition catalyst, had no effect on either PMN accumulation or total NO production. However, treatment with this ONOO decomposition catalyst also reduced ischemia/reperfusion-induced and L-arginine-enhanced nitrative stress and cardiomyocyte apoptosis (P values all <0.01). These results demonstrated that ischemic/reperfusion stimulated PMN accumulation may result in cardiomyocyte injury by an iNOS-derived nitric oxide initiated and peroxynitrite-mediated mechanism. Therapeutic interventions that block PMN accumulation, inhibit iNOS activity or scavenge peroxynitrite may reduce nitrative stress and attenuate tissue injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Garcia-Dorado D (2004) Myocardial reperfusion injury: a new view. Cardiovasc Res 61:363–364

    Article  PubMed  CAS  Google Scholar 

  2. Eefting F, Rensing B, Wigman J, et al (2004) Role of apoptosis in reperfusion injury. Cardiovasc Res 61:414–426

    Article  PubMed  CAS  Google Scholar 

  3. Arstall MA, Sawyer DB, Fukazawa R, Kelly RA (1999) Cytokine-mediated apoptosis in cardiac myocytes: the role of inducible nitric oxide synthase induction and peroxynitrite generation. Circ Res 85:829–840

    PubMed  CAS  Google Scholar 

  4. Li J, Baud O, Vartanian T, Volpe JJ, Rosenberg PA (2005) Peroxynitrite generated by inducible nitric oxide synthase and NADPH oxidase mediates microglial toxicity to oligodendrocytes. Proc Natl Acad Sci 102:9936–9941

    Article  PubMed  CAS  Google Scholar 

  5. Liang F, Gao E, Tao L, et al (2004) Critical timing of L-arginine treatment in post-ischemic myocardial apoptosis-role of NOS isoforms. Cardiovasc Res 62:568–577

    Article  PubMed  CAS  Google Scholar 

  6. Vinten-Johansen J (2004) Involvement of neutrophils in the pathogenesis of lethal myocardial reperfusion injury. Cardiovasc Res 61:481–497

    Article  PubMed  CAS  Google Scholar 

  7. Williams FM (1996) Neutrophils and myocardial reperfusion injury. Pharmacol Ther 72:1–12

    Article  PubMed  CAS  Google Scholar 

  8. Evans TJ, Buttery LDK, Carpenter A, Springall DR, Polak JM, Cohen J (1996) Cytokine-treated human neutrophils contain inducible nitric oxide synthase that produces nitration of ingested bacteria. Proc Natl Acad Sci USA 93:9553–9558

    Article  PubMed  CAS  Google Scholar 

  9. Greenacre SA, Rocha FA, Rawlingson A, et al (2002) Protein nitration in cutaneous inflammation in the rat: essential role of inducible nitric oxide synthase and polymorphonuclear leukocytes. Br J Pharmacol 136:985–994

    Article  PubMed  CAS  Google Scholar 

  10. Jablonska E, Puzewska W, Marcinczyk M, Grabowska Z, Jablonski J (2005) iNOS expression and NO production by neutrophils in cancer patients. Arch Immunol Ther Exp (Warsz) 53:175–179

    CAS  Google Scholar 

  11. Dun Y, Zhi JM, Sun HY, Zhao RR, Zhao ZQ (2002) Activated polymorphonuclear leukocytes induce cardiomyocyte apoptosis and the protective effects of carvedilol. Methods Find Exp Clin Pharmacol 24:403–412

    Article  PubMed  CAS  Google Scholar 

  12. Yang J, Jones SP, Suhara T, et al (2003) Endothelial cell overexpression of Fas ligand attenuates ischemia-reperfusion injury in the heart. J Biol Chem 278:15185–15191

    Article  PubMed  CAS  Google Scholar 

  13. Nangle MR, Cotter MA, Cameron NE (2004) Effects of the peroxynitrite decomposition catalyst, FeTMPyP, on function of corpus cavernosum from diabetic mice. Eur J Pharmacol 502:143–148

    Article  PubMed  CAS  Google Scholar 

  14. Gao F, Yue TL, Shi DW, et al (2002) p38 MAPK inhibition reduces myocardial reperfusion injury via inhibition of endothelial adhesion molecule expression and blockade of PMN accumulation. Cardiovasc Res 53:414–422

    Article  PubMed  CAS  Google Scholar 

  15. Tao L, Liu HR, Gao E, et al (2003) Antioxidative, antinitrative, and vasculoprotective effects of a peroxisome proliferator-activated receptor-{gamma} agonist in hypercholesterolemia. Circulation 108:2805–2811

    Article  PubMed  CAS  Google Scholar 

  16. Ferdinandy P, Schulz R (2003) Nitric oxide, superoxide, and peroxynitrite in myocardial ischaemia-reperfusion injury and preconditioning. Br J Pharmacol 138:532–543

    Article  PubMed  CAS  Google Scholar 

  17. Yamakura F, Taka H, Fujimura T, Murayama K (1998) Inactivation of human manganese-superoxide dismutase by peroxynitrite is caused by exclusive nitration of tyrosine 34 to 3-nitrotyrosine. J Biol Chem 273:14085–14089

    Article  PubMed  CAS  Google Scholar 

  18. Virág L, Marmer DJ, Szabó C (1998) Crucial role of apopain in the peroxynitrite-induced apoptotic DNA fragmentation. Free Radic Biol Med 25:1075–1082

    Article  PubMed  Google Scholar 

  19. Yu SW, Wang H, Poitras MF, et al (2002) Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 297:259–263

    Article  PubMed  CAS  Google Scholar 

  20. Chiarugi A, Moskowitz MA (2002) Cell biology: PARP-1—a perpetrator of apoptotic cell death? Science 297:200–201

    Article  PubMed  CAS  Google Scholar 

  21. Ushmorov A, Ratter F, Lehmann V, Droge W, Schirrmacher V, Umansky V (1999) Nitric-oxide-induced apoptosis in human leukemic lines requires mitochondrial lipid degradation and cytochrome C release. Blood 93:2342–2352

    PubMed  CAS  Google Scholar 

  22. MacMillan-Crow LA, Crow JP, Thompson JA (1998) Peroxynitrite-mediated inactivation of manganese superoxide dismutase involves nitration and oxidation of critical tyrosine residues. Biochemistry 37:1613–1622

    Article  PubMed  CAS  Google Scholar 

  23. Francescutti D, Baldwin J, Lee L, Mutus B (1996) Peroxynitrite modification of glutathione reductase: Modeling studies and kinetic evidence suggest the modification of tyrosines at the glutathione disulfide binding site. Protein Eng 9:189– 194

    Article  PubMed  CAS  Google Scholar 

  24. Gow AJ, Duran D, Malcolm S, Ischiropoulos H (1996) Effects of peroxynitrite-induced protein modifications on tyrosine phosphorylation and degradation. FEBS Lett 385:63–66

    Article  PubMed  CAS  Google Scholar 

  25. Kong SK, Yim MB, Stadtman ER, Chock PB (1996) Peroxynitrite disables the tyrosine phosphorylation regulatory mechanism: Lymphocyte-specific tyrosine kinase fails to phosphorylate nitrated cdc2(6–20)NH2 peptide. Proc Natl Acad Sci USA 93: 3377–3382

    Article  PubMed  CAS  Google Scholar 

  26. Agazie Y, Ischenko I, Hayman M (2002) Concomitant activation of the PI3K-Akt and the Ras-ERK signaling pathways is essential for transformation by the V-SEA tyrosine kinase oncogene. Oncogene 21:697–707

    Article  PubMed  CAS  Google Scholar 

  27. Kontos CD, Cha EH, York JD, Peters KG (2002) The endothelial receptor tyrosine kinase Tie1 activates phosphatidylinositol 3-kinase and Akt to inhibit apoptosis. Mol Cell Biol 22:1704–1713

    Article  PubMed  CAS  Google Scholar 

  28. Zou MH, Hou XY, Shi CM, Nagata D, Walsh K, Cohen RA (2002) Modulation by peroxynitrite of Akt- and AMP-activated kinase-dependent Ser1179 phosphorylation of endothelial nitric oxide synthase. J Biol Chem 277:32552–32557

    Article  PubMed  CAS  Google Scholar 

  29. Liu Y, Terata K, Chai Q, Li H, Kleinman LH, Gutterman DD (2002) Peroxynitrite inhibits Ca2+-activated K+ channel activity in smooth muscle of human coronary arterioles. Circ Res 91:1070–1076

    Article  PubMed  CAS  Google Scholar 

  30. Zhang X, Chen J, Graham SH, et al (2002) Intranuclear localization of apoptosis-inducing factor (AIF) and large scale DNA fragmentation after traumatic brain injury in rats and in neuronal cultures exposed to peroxynitrite. J Neurochem. 82:181–191

    Article  PubMed  CAS  Google Scholar 

  31. Oyadomari S, Takeda K, Takiguchi M, et al (2001) Nitric oxide-induced apoptosis in pancreatic beta cells is mediated by the endoplasmic reticulum stress pathway. Proc Natl Acad Sci USA 98:10845–10850

    Article  PubMed  CAS  Google Scholar 

  32. Schulman SP, Becker LC, Kass DA, et al (2006) L-arginine therapy in acute myocardial infarction: the Vascular Interaction With Age in Myocardial Infarction (VINTAGE MI) randomized clinical trial. JAMA 295:58–64

    Article  PubMed  CAS  Google Scholar 

  33. Chen Z, Chua CC, Ho YS, Hamdy RC, Chua BHL (2001) Overexpression of Bcl-2 attenuates apoptosis and protects against myocardial I/R injury in transgenic mice. APJ Heart Circ Physiol 280:H2313–H2320

    PubMed  CAS  Google Scholar 

  34. Holly TA, Drincic A, Byun Y, et al (1999) Caspase inhibition reduces myocyte cell death induced by myocardial ischemia and reperfusion in vivo. J Mol Cell Cardiol 31:1709–1715

    Article  PubMed  CAS  Google Scholar 

  35. Miao W, Luo Z, Kitsis RN, Walsh K (2000) Intracoronary, adenovirus-mediated Akt gene transfer in heart limits infarct size following ischemia-reperfusion injury in vivo. J Mol Cell Cardiol 32:2397–2402

    Article  PubMed  CAS  Google Scholar 

  36. Yaoita H, Ogawa K, Maehara K, Maruyama Y (1998) Attenuation of ischemia/reperfusion injury in rats by a caspase inhibitor [see comments]. Circulation 97:276–281

    PubMed  CAS  Google Scholar 

  37. Heineke J, Kempf T, Kraft T, et al (2003) Downregulation of cytoskeletal muscle LIM protein by nitric oxide: Impact on cardiac myocyte hypertrophy. Circulation 107:1424–1432

    Article  PubMed  CAS  Google Scholar 

  38. Vakeva AP, Agah A, Rollins SA, et al (1998) Myocardial infarction and apoptosis after myocardial ischemia and reperfusion: role of the terminal complement components and inhibition by anti-C5 therapy. Circulation 97:2259–2267

    PubMed  CAS  Google Scholar 

  39. Mocanu MM, Baxter GF, Yellon DM (2000) Caspase inhibition and limitation of myocardial infarct size: protection against lethal reperfusion injury. Br J Pharmacolgy 130:197–200

    Article  CAS  Google Scholar 

  40. Brocheriou V, Hagege AA, Oubenaissa A, et al (2000) Cardiac functional improvement by a human Bcl-2 transgene in a mouse model of ischemia/reperfusion injury. J Gene Med 2:326–333

    Article  PubMed  CAS  Google Scholar 

  41. Ma XL, Kumar S, Gao F, et al (1999) Inhibition of p38 mitogen-activated protein kinase decreases cardiomyocyte apoptosis and improves cardiac function after myocardial ischemia and reperfusion. Circulation 99:1685–1691

    PubMed  CAS  Google Scholar 

  42. Chatterjee S, Bish LT, Jayasankar V, et al (2003) Blocking the development of postischemic cardiomyopathy with viral gene transfer of the apoptosis repressor with caspase recruitment domain. J Thorac Cardiovasc Surg 125:1461–1469

    Article  PubMed  CAS  Google Scholar 

  43. Abbate A, Biondi-Zoccai GG, Baldi A (2002) Pathophysiologic role of myocardial apoptosis in post-infarction left ventricular remodeling. J Cell Physiol 193:145–153

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported in part by NIH grant 2R01HL-63828, a research award from the American Diabetes Association (7-05-RA-83), a research award from the Commonwealth of Pennsylvania- Department of Health (to XLM), and NSFC 30572084 (to HRL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Liang Ma.

Additional information

Xiao-Liang Wang and Hui-Rong Liu contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, XL., Liu, HR., Tao, L. et al. Role of iNOS-derived reactive nitrogen species and resultant nitrative stress in leukocytes-induced cardiomyocyte apoptosis after myocardial ischemia/reperfusion. Apoptosis 12, 1209–1217 (2007). https://doi.org/10.1007/s10495-007-0055-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-007-0055-y

Keywords

Navigation