Skip to main content
Log in

Conformational change in the active center region of GST P1-1, due to binding of a synthetic conjugate of DXR with GSH, enhanced JNK-mediated apoptosis

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Treatment of cells with a synthetic conjugate of DXR with GSH via glutaraldehyde (GSH-DXR) caused cytochrome c to be released from the mitochondria to the cytosol following potent activation of caspase-3 and -9 by typical DNA fragmentation. This apoptosis was regulated by the JNK-signaling pathway. In the present experiment, binding of GSH-DXR to GST P1-1 allosterically led to the disappearance of its enzyme activity and activated the kinase activity of JNK without dissociation of the JNK-GST P1-1 complex. The recombinant GST P1-1 molecule with a mutation in the active center region (W38H and C47S) lost its GST activity when bound to JNK to the same degree as the wild-type, with the mutated GST P1-1 molecule failing to inhibit the activity of JNK. It has been reported that JNK-signaling is regulated by GST P1-1 via interaction with the C-terminus. We confirmed that GST P1-1 deletion mutant (Δ194–209) and a site-directed mutant (R201A) in the C-terminal region failed to bind and inhibit JNK. These results indicated that not only binding of the C-terminal region of GST P1-1 to the JNK molecule, but also the active center region of GST P1-1 play important roles in the regulation of JNK enzyme activity. The findings suggested that allosteric inhibition of GST P1-1 activity by the binding of GSH-DXR following conformational change may activate JNK and induce apoptosis via the mitochondrial pathway in the cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. David RJ (2000) Signal transduction by the JNK group of MAP kinases. Cell 103:239–252

    Article  Google Scholar 

  2. Ichijo H (1999) From receptors to stress-activated MAP kinases. Oncogene 18:6087–6093

    Article  PubMed  CAS  Google Scholar 

  3. Ip YT, Davis RJ (1998) Signal transduction by the c-Jun N-terminal kinase (JNK) from inflammation to development. Curr Opin Cell Biol 10:205–219

    Article  PubMed  CAS  Google Scholar 

  4. Weston CR, Davis RJ (2002) The JNK signal transduction pathway. Curr Opin Genet Dev 12:14–21

    Article  PubMed  CAS  Google Scholar 

  5. Yin Z, Ivanov VN, Habelhah H, Tew KD, Ronai Z (2000) Glutathione S-transferase p elicits protection against H2O2-induced cell death via coordinated regulation of stress kinases. Cancer Res 60:4053–4057

    PubMed  CAS  Google Scholar 

  6. Adler V, Yin Z, Fuchs SY, et al (1999) Regulation of JNK signaling by GSTp. EMBO J 18:1321–1334

    Article  PubMed  CAS  Google Scholar 

  7. Wang T, Arifoglu P, Ronai Z, Tew KD (2001) Glutathione S-transferase P1-1 (GSTP1-1) inhibits c-Jun N-terminal kinase (JNK1) signaling through interaction with the c terminus. J Biol Chem 276:20999–21003

    Article  PubMed  CAS  Google Scholar 

  8. Adler V, Pincus MR (2004) Effector peptides from glutathione-S-transferase-pi affect the activation of jun by jun-N-terminal kinase. Ann Clin Lab Sci 34:35–46

    PubMed  CAS  Google Scholar 

  9. Chie L, Adler V, Friedman FK, Chung D, Pincus MR (2004) An effector peptide from glutathione-S-transferase-pi strongly and selectively blocks mitotic signaling by oncogenic ras-p21. Protein J 23:235–238

    Article  PubMed  CAS  Google Scholar 

  10. Chen YR, Wang X, Templeton D, Davis RJ, Tan TH (1996) The role of c-Jun N-terminal kinase (JNK) in apoptosis induced by ultraviolet c and gamma radiation. Duration of JNK activation may determine cell death and proliferation. J Biol Chem 271:31929–31936

    Article  PubMed  CAS  Google Scholar 

  11. Guo YL, Baysal K, Kang B, Yang LJ, Williamson JR (1998) Correlation between sustained c-Jun N-terminal protein kinase activation and apoptosis induced by tumor necrosis factor-α in rat mesangial cells. J Biol Chem 273:4027–4034

    Article  PubMed  CAS  Google Scholar 

  12. Javelaud D, Besançon F (2001) NF-κB activation results in rapid inactivation of JNK in TNFα-treated Ewing sarcoma cells: a mechanism for the anti-apoptotic effect of NF-κB. Oncogene 20:4365–4372

    Article  PubMed  CAS  Google Scholar 

  13. Sanchez-Perez I, Murguia JR, Perona R (1998) Cisplatin induces a persistent activation of JNK that is related to cell death. Oncogene 16:533–540

    Article  PubMed  CAS  Google Scholar 

  14. Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME (1995) Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270:1326–1331

    Article  PubMed  CAS  Google Scholar 

  15. Park H-S, Lee J-S, Huh S-H, Seo J-S, Choi E-J (2001) Hsp72 functions as a natural inhibitory protein of c-Jun N-terminal kinase. EMBO J 20:446–456

    Article  PubMed  CAS  Google Scholar 

  16. Shim J, Lee H, Park J, Kim H, Choi E-J (1996) A non-enzymatic p21 protein inhibitor of stress-activated protein kinases. Nature 381:804–806

    Article  PubMed  CAS  Google Scholar 

  17. Shim J, Park H-S, Kim M-J et al (2000) Rb protein down-regulates the stress-activated signals through inhibiting c-Jun N-terminal kinase/stress-activated protein kinase. J Biol Chem 275:14107–14111

    Article  PubMed  CAS  Google Scholar 

  18. Whitmarsh AJ, Cavanagh J, Tournier C, Yasuda J, Davis RJ (1998) A mammalian scaffold complex that selectively mediates MAP kinase activation. Science 281:1671–1674

    Article  PubMed  CAS  Google Scholar 

  19. Wilce MCJ, Parker MW (1994) Structure and function of glutathione S-transferases. Biochim Biophys Acta 1205:1–18

    PubMed  CAS  Google Scholar 

  20. Nishihira J, Ishibashi T, Sakai M, Nishi S, Kumazaki T (1992) Evidence for the involvement of tryptophan 38 in the activity site of glutathione S-transferase P. Biochem Biophys Res Commun 185:1069–1077

    Article  PubMed  CAS  Google Scholar 

  21. Nishihira J, Ishibashi T, Sakai M et al (1992) Characterization of cysteine residues of glutathione S-transferase P: evidence for steric hindrance of substrate binding by a bulky adduct to cysteine 47. Biochem Biophys Res Commun 188:424–432

    Article  PubMed  CAS  Google Scholar 

  22. Takahashi N, Asakura T, Ohkawa K (1996) Pharmacokinetic analysis of protein-conjugated doxorubicin (DXR) and its degraded adducts in DXR-sensitive and -resistant rat hepatoma cells. Anti-Cancer Drugs 7:687–696

    Article  PubMed  CAS  Google Scholar 

  23. Asakura T, Takahashi N, Takada K, Inoue T, Ohkawa K (1997) Drug conjugate of doxorubicin with glutathione is a potent reverser of multidrug resistance in rat hepatoma cells. Anti-Cancer Drugs 8:199–203

    Article  PubMed  CAS  Google Scholar 

  24. Asakura T, Sawai T, Hashidume Y, Ohkawa Y, Yokoyama S, Ohkawa K (1999) Caspase-3 activation during doxorubicin conjugated with glutathione-mediated apoptosis. Br J Cancer 80:711–715

    Article  PubMed  CAS  Google Scholar 

  25. Asakura T, Ohkawa K, Takahashi N, Takada K, Inoue T, Yokoyama S (1997) Glutathione-doxorubicin conjugate expresses potent cytotoxicity by a suppression of glutathione S-transferase activity: comparison between doxorubicin-sensitive and -resistant rat hepatoma cells. Br J Cancer 76:1333–1337

    PubMed  CAS  Google Scholar 

  26. Asakura T, Hashizume Y, Tashiro K et al (2001) Suppression of GST-P by treatment with glutathione-doxorubicin conjugate induces potent apoptosis in rat hepatoma cells. Int J Cancer 94:171–177

    Article  PubMed  CAS  Google Scholar 

  27. Boldin MP, Goncharov TM, Goltsev YV, Wallach D (1996) Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1 and TNF receptor-induced cell death. Cell 85:803–815

    Article  PubMed  CAS  Google Scholar 

  28. Muzio M, Chinnaiyan AM, Kischkel FC et al (1996) FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell 85:817–827

    Article  PubMed  CAS  Google Scholar 

  29. Reed JC (1997) Bcl-2 family proteins: regulators of apoptosis and chemoresistance in hematologic malignancies. Semin Hematol 34:9–19

    PubMed  CAS  Google Scholar 

  30. Srinivasula SM, Ahmad M, Fernandes–Alnemri T, Litwack G, Alnemri ES (1996) Molecular ordering of the Fas-apoptotic pathway: the Fas/APO-1 protease Mch5 is a CrmA-inhibitable protease that activates multiple Ced-3/CE-like cysteine proteases. Proc Natl Acad Sci USA 93:14486–14491

    Article  PubMed  CAS  Google Scholar 

  31. Shiraishi H, Okamoto H, Yoshimura A, Yoshida H (2006) ER stress-induced apoptosis and caspase-12 activation occurs downstream of mitochondrial apoptosis involving Apaf-1. J Cell Sci 119:3958–3966

    Article  PubMed  CAS  Google Scholar 

  32. Gao G, Dou QP (2000) N-terminal cleavage of Bax by calpain generates a potent proapoptotic 18-kDa fragment that promotes Bcl-2-independent cytochrome c release and apoptotic cell death. J Cell Biochem 80:53–72

    Article  PubMed  CAS  Google Scholar 

  33. Ghibelli L, Coppola S, Fanelli C et al (1999) Glutathione depletion causes cytochrome c release even in the absence of cell commitment to apoptosis. FASEB J 13:2031–2036

    PubMed  CAS  Google Scholar 

  34. Srinivasula SM, Ahmad M, Fernandes–Alnemri T, Alnemri ES (1998) Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization. Mol Cell 1:949–957

    Article  PubMed  CAS  Google Scholar 

  35. Zou H, Henzel WJ, Liu X, Lutschg A, Wang X (1997) Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90:405–413

    Article  PubMed  CAS  Google Scholar 

  36. Zou H, Li Y, Liu X, Wang X (1999) An APAF-1 cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem 274:11549–11556

    Article  PubMed  CAS  Google Scholar 

  37. Sugioka Y, Kano T, Okuda A, Sakai M, Kitagawa T, Muramatsu M (1985) Cloning and the nucleotide sequence of rat glutathione S-transferase P cDNA. Nucleic Acids Res 13:6049–6057

    Article  Google Scholar 

  38. Ohkawa K, Hatano T, Tsukada Y, Matsuda M (1993) Chemotherapeutic efficacy of the protein-doxorubicin conjugates on multidrug resistant rat hepatoma cell line in vitro. Br J Cancer 67:274–278

    PubMed  CAS  Google Scholar 

  39. Ohkawa K, Hatano T, Yamada K et al (1993). Bovine serum albumin-doxorubicin conjugate overcomes multidrug resistance in a rat hepatoma. Cancer Res 53:4238–4242

    PubMed  CAS  Google Scholar 

  40. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases—The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    PubMed  CAS  Google Scholar 

  41. Nicholson DW, Ali A, Thornberry NA et al (1995) Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376:37–43

    Article  PubMed  CAS  Google Scholar 

  42. Hashizume Y, Asakura T, Yamauchi T, Soda K, Ohkawa K (2001) Relationship between cytocidal activity and glutathione S-transferase inhibition using doxorubicin coupled to stereoisomers of glutathione which are different substrate specificity. Anti-Cancer Drugs 12:549–554

    Article  PubMed  CAS  Google Scholar 

  43. Fuchs SY, Adler V, Pincus MR, Ronai Z (1998) MEKK1/JNK stabilizes and activates p53. Proc Natl Acad Sci USA 95:10541–10546

    Article  PubMed  CAS  Google Scholar 

  44. Kasibhatla S, Brunner T, Genestier L et al (1998) DNA damaging agents induce expression of Fas ligand and subsequent apoptosis in T lymphocytes via the activation of NF-κB and AP-1. Mol Cell 1:543–551

    Article  PubMed  CAS  Google Scholar 

  45. Kobayashi K, Tsukamoto I (2001) Prolonged Jun N-terminal kinase (JNK) activation and the upregulation of p53 and p21 (WAF1/CIP1) preceded apoptosis in hepatocytes after partial hepatectomy and cisplatin. Biochim Biophys Acta 1537:79–88

    PubMed  CAS  Google Scholar 

  46. Freeman BC, Myers MP, Schumacher R, Morimoto RI (1995) Identification of a regulatory motif in Hsp70 that affects ATPase activity, substrate binding and interaction with HDJ-1. EMBO J 14:2281–2292

    PubMed  CAS  Google Scholar 

  47. Milarski KL, Morimoto RI (1989) Mutational analysis of the human HSP70 protein: distinct domains for nucleolar localization and adenosine triphosphate binding. J Cell Biol 109:1947–1962

    Article  PubMed  CAS  Google Scholar 

  48. Li YS, Shyy JY, Li S et al (1996) The Ras-JNK pathway is involved in shear-induced gene expression. Mol Cell Biol 16:5947–5954

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadashi Asakura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asakura, T., Sasagawa, A., Takeuchi, H. et al. Conformational change in the active center region of GST P1-1, due to binding of a synthetic conjugate of DXR with GSH, enhanced JNK-mediated apoptosis. Apoptosis 12, 1269–1280 (2007). https://doi.org/10.1007/s10495-007-0053-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-007-0053-0

Keywords

Navigation