Skip to main content
Log in

Does the tumor microenvironment influence radiation-induced apoptosis?

  • Commentary
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Cytotoxic anti-cancer agents induce apoptosis in tumor and normal tissues. Therefore, it is important to investigate which factors determine these apoptotic processes and hence their likely impact on therapeutic gain. Radiation-induced apoptosis in tumors may be inhibited due to mutations of apoptotic elements or to tumor microenvironmental conditions arising from vascular insufficiency. Tumors typically contain regions of hypoxia, low glucose and acidosis. Hypoxic cells compromise treatment partly because of reduced fixation of damage during radiotherapy and partly because they promote a more malignant phenotype. There is also evidence that hypoxia may inhibit apoptosis. For some cell types, concurrent hypoxia may modulate radiation-induced apoptosis while, for others, post-irradiation hypoxia may be required. This may reflect the activity of different apoptotic pathways. Pathways involving mitochondrial components as well as regulation of SAPK and Fas have been implicated. In addition, several key stages in apoptosis are sensitive to depletion of cellular energy reserves, which results from hypoxia and low glucose conditions. There is also evidence that low pH in tumors can interfere with radiation-induced apoptosis, partly through cell cycle arrest and other undefined mechanisms. Conclusions: Hypoxia, low glucose and acidosis influence radiation-induced apoptosis and thus may be detrimental to radiotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vaupel P (2004) Tumor microenvironmental physiology and its implications for radiation oncology. Semin Radiat Oncol 14(3):198–206

    Article  PubMed  Google Scholar 

  2. Erb P, Ji J, Wernli M, et al (2005) Role of apoptosis in basal cell and squamous cell carcinoma formation. Immunol Lett 100(1):68–72

    Article  PubMed  CAS  Google Scholar 

  3. Vaupel P (1990) Oxygenation of human tumors. Strahlenther Onkol 166(6):377–386

    PubMed  CAS  Google Scholar 

  4. Vaupel P, Schlenger K, Knoop C, et al (1991) Oxygenation of human tumors: evaluation of tissue oxygen distribution in breast cancers by computerized O2 tension measurements. Cancer Res 51(12):3316–3322

    PubMed  CAS  Google Scholar 

  5. Koong AC, Mehta VK, Le QT, et al (2000) Pancreatic tumors show high levels of hypoxia. Int J Radiat Oncol Biol Phys 48(4):919–922

    Article  PubMed  CAS  Google Scholar 

  6. Nordsmark M, Overgaard J (2000) A confirmatory prognostic study on oxygenation status and loco-regional control in advanced head and neck squamous cell carcinoma treated by radiation therapy. Radiother Oncol 57(1):39–43

    Article  PubMed  CAS  Google Scholar 

  7. Rofstad EK, Sundfor K, Lyng H, et al (2000) Hypoxia-induced treatment failure in advanced squamous cell carcinoma of the uterine cervix is primarily due to hypoxia-induced radiation resistance rather than hypoxia-induced metastasis. Br J Cancer 83(3):354–359

    Article  PubMed  CAS  Google Scholar 

  8. Harrison LB, Chadha M, Hill RJ, et al (2002) Impact of tumor hypoxia and anemia on radiation therapy outcomes. Oncologist 7(6):492–508

    Article  PubMed  Google Scholar 

  9. Nordsmark M, Bentzen SM, Rudat V, et al (2005) Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study. Radiother Oncol 77(1):18–24

    Article  PubMed  Google Scholar 

  10. Hockel M, Schlenger K, Aral B, et al (1996) Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res 56(19):4509–4515

    PubMed  CAS  Google Scholar 

  11. Hopcia KL, McCarey YL, Sylvester FC, et al (1996) Radiation-induced apoptosis in HL60 cells: oxygen effect, relationship between apoptosis and loss of clonogenicity, and dependence of time to apoptosis on radiation dose. Radiat Res 145(3):315–323

    PubMed  CAS  Google Scholar 

  12. Klassen NV, Walker PR, Ross CK, et al (1993) Two-stage cell shrinkage and the OER for radiation-induced apoptosis of rat thymocytes. Int J Radiat Biol 64(5):571–581

    PubMed  CAS  Google Scholar 

  13. Horsman MR (1995) Nicotinamide and other benzamide analogs as agents for overcoming hypoxic cell radiation resistance in tumours. Acta Oncol 34(5):571–587

    PubMed  CAS  Google Scholar 

  14. Vora S, Halper JP, Knowles DM (1985) Alterations in the activity and isozymic profile of human phosphofructokinase during malignant transformation in vivo and in vitro: transformation- and progression-linked discriminants of malignancy. Cancer Res 45(7):2993–3001

    PubMed  CAS  Google Scholar 

  15. Medina RA, Owen GI (2002) Glucose transporters: expression, regulation and cancer. Biol Res 35(1):9–26

    Article  PubMed  CAS  Google Scholar 

  16. Airley R, Loncaster J, Davidson S, et al (2001) Glucose transporter glut-1 expression correlates with tumor hypoxia and predicts metastasis-free survival in advanced carcinoma of the cervix. Clin Cancer Res 7(4):928–934

    PubMed  CAS  Google Scholar 

  17. Seagroves TN, Ryan HE, Lu H, et al (2001) Transcription factor HIF-1 is a necessary mediator of the pasteur effect in mammalian cells. Mol Cell Biol 21(10):3436–3444

    Article  PubMed  CAS  Google Scholar 

  18. Vordermark D, Kraft P, Katzer A, et al (2005) Glucose requirement for hypoxic accumulation of hypoxia-inducible factor-1alpha (HIF-1alpha). Cancer Lett 230(1):122–133

    Article  PubMed  CAS  Google Scholar 

  19. Kwon SJ, Lee YJ (2005) Effect of low glutamine/glucose on hypoxia-induced elevation of hypoxia-inducible factor-1alpha in human pancreatic cancer MiaPaCa-2 and human prostatic cancer DU-145 cells. Clin Cancer Res 11(13):4694–4700

    Article  PubMed  CAS  Google Scholar 

  20. Stubbs M, McSheehy PM, Griffiths JR, et al (2000) Causes and consequences of tumour acidity and implications for treatment. Mol Med Today 6(1):15–19

    Article  PubMed  CAS  Google Scholar 

  21. Amellem O, Pettersen EO (1991) The role of protein accumulation on the kinetics of entry into S phase following extreme hypoxia. Anticancer Res 11(3):1083–1087

    PubMed  CAS  Google Scholar 

  22. Yuan J, Narayanan L, Rockwell S, et al (2000) Diminished DNA repair and elevated mutagenesis in mammalian cells exposed to hypoxia and Low pH. Cancer Res 60(16):4372–4376

    PubMed  CAS  Google Scholar 

  23. Belka C, Jendrossek V, Pruschy M, et al (2004) Apoptosis-modulating agents in combination with radiotherapy-current status and outlook. Int J Radiat Oncol Biol Phys 58(2):542–554

    Article  PubMed  CAS  Google Scholar 

  24. Brizel DM, Dodge RK, Clough RW, et al (1999) Oxygenation of head and neck cancer: changes during radiotherapy and impact on treatment outcome. Radiother Oncol 53(2):113–117

    Article  PubMed  CAS  Google Scholar 

  25. Enoch T, Norbury C (1995) Cellular responses to DNA damage: cell-cycle checkpoints, apoptosis and the roles of p53 and ATM. Trends Biochem Sci 20(10):426−430

    Article  PubMed  CAS  Google Scholar 

  26. Zgheib O, Huyen Y, DiTullio RA, et al (2005) ATM signaling and 53BP1. Radiother Oncol 76:119–122

    Article  PubMed  CAS  Google Scholar 

  27. Rogoff HA, Pickering MT, Frame FM, et al (2004) Apoptosis associated with deregulated E2F activity is dependent on E2F1 and Atm/Nbs1/Chk2. Mol Cell Biol 24(7):2968–2977

    Article  PubMed  CAS  Google Scholar 

  28. Pusapati RV, Rounbehler RJ, Hong S, et al (2006) ATM promotes apoptosis and suppresses tumorigenesis in response to Myc. Proc Natl Acad Sci USA 103(5):1446–1451

    Article  PubMed  CAS  Google Scholar 

  29. Verheij M, Bose R, Lin XH, et al (1996) Requirement for ceramide-initiated SAPK/JNK signalling in stress-induced apoptosis. Nature 380(6569):75–79

    Article  PubMed  CAS  Google Scholar 

  30. von Haefen C, Wieder T, Gillissen B, et al (2002) Ceramide induces mitochondrial activation and apoptosis via a Bax-dependent pathway in human carcinoma cells. Oncogene 21(25):4009–4019

    Article  PubMed  CAS  Google Scholar 

  31. Kolesnick R, Fuks Z (2003) Radiation and ceramide-induced apoptosis. Oncogene 22(37):5897–5906

    Article  PubMed  CAS  Google Scholar 

  32. Kimura K, Gelmann EP (2000) Tumor Necrosis Factor-α and Fas activate complementary Fas-associated Death Domain-dependent pathways that enhance apoptosis induced by γ-Irradiation. J Biol Chem 275(12):8610–8617

    Article  PubMed  CAS  Google Scholar 

  33. Hamasu T, Inanami O, Tsujitani M, et al (2005) Post-irradiation hypoxic incubation of X-irradiated MOLT-4 cells reduces apoptotic cell death by changing the intracellular redox state and modulating SAPK/JNK pathways. Apoptosis 10(3):557–567

    Article  PubMed  CAS  Google Scholar 

  34. Inanami O, Sugihara K, Okui T, et al (2002) Hypoxia and etanidazole alter radiation-induced apoptosis in HL60 cells but not in MOLT-4 cells. Int J Radiat Biol 78(4):267–274

    Article  PubMed  CAS  Google Scholar 

  35. Weinmann M, Marini P, Jendrossek V, et al (2004) Influence of hypoxia on TRAIL-induced apoptosis in tumor cells. Int J Radiat Oncol Biol Phys 58(2):386–396

    Article  PubMed  CAS  Google Scholar 

  36. Samuni AM, Kasid U, Chuang EY, et al (2005) Effects of hypoxia on radiation-responsive stress-activated protein kinase, p53, and caspase 3 signals in TK6 human lymphoblastoid cells. Cancer Res 65(2):579–586

    PubMed  CAS  Google Scholar 

  37. Weinmann M, Jendrossek V, Guner D, et al (2004) Cyclic exposure to hypoxia and reoxygenation selects for tumor cells with defects in mitochondrial apoptotic pathways. FASEB J 18(15):1906–1908

    PubMed  CAS  Google Scholar 

  38. Cuisnier O, Serduc R, Lavieille JP, et al (2003) Chronic hypoxia protects against gamma-irradiation-induced apoptosis by inducing bcl-2 up-regulation and inhibiting mitochondrial translocation and conformational change of bax protein. Int J Oncol 23(4):1033–1041

    PubMed  CAS  Google Scholar 

  39. Graeber TG, Osmanian C, Jacks T, et al (1996) Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379(6560):88–91

    Article  PubMed  CAS  Google Scholar 

  40. Vaupel P, Hockel M (2003) Tumor oxygenation and its relevance to tumor physiology and treatment. Adv Exp Med Biol 510:45–49

    PubMed  CAS  Google Scholar 

  41. Soengas MS, Alarcon RM, Yoshida H, et al (1999) Apaf-1 and caspase-9 in p53-dependent apoptosis and tumor inhibition. Science 284(5411):156–159

    Article  PubMed  CAS  Google Scholar 

  42. Hammond EM, Giaccia AJ (2005) The role of p53 in hypoxia-induced apoptosis. Biochem Biophys Res Commun 331(3):718–725

    Article  PubMed  CAS  Google Scholar 

  43. Dong Z, Wang J (2004) Hypoxia selection of death-resistant cells. A role for Bcl-X(L). J Biol Chem 279(10):9215–9221

    Article  PubMed  CAS  Google Scholar 

  44. Weinmann M, Belka C, Guner D, et al (2005) Array-based comparative gene expression analysis of tumor cells with increased apoptosis resistance after hypoxic selection. Oncogene 24(38):5914–5922

    Article  PubMed  CAS  Google Scholar 

  45. Koumenis C, Naczki C, Koritzinsky M, et al (2002) Regulation of protein synthesis by hypoxia via activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2alpha. Mol Cell Biol 22(21):7405–7416

    Article  PubMed  CAS  Google Scholar 

  46. Graeber TG, Peterson JF, Tsai M, et al (1994) Hypoxia induces accumulation of p53 protein, but activation of a G1-phase checkpoint by low-oxygen conditions is independent of p53 status. Mol Cell Biol 14(9):6264–6277

    PubMed  CAS  Google Scholar 

  47. Amellem O, Loffler M, Pettersen EO (1994) Regulation of cell proliferation under extreme and moderate hypoxia: the role of pyrimidine (deoxy) nucleotides. Br J Cancer 70(5):857–866

    PubMed  CAS  Google Scholar 

  48. Hockel M, Vaupel P (2001) Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 93(4):266–276

    Article  PubMed  CAS  Google Scholar 

  49. Shinomiya N, Kuno Y, Yamamoto F, et al (2000) Different mechanisms between premitotic apoptosis and postmitotic apoptosis in X-irradiated U937 cells. Int J Radiat Oncol Biol Phys 47(3):767–777

    Article  PubMed  CAS  Google Scholar 

  50. Ljungkvist AS, Bussink J, Kaanders JH, et al (2006) Dynamics of hypoxia, proliferation and apoptosis after irradiation in a murine tumor model. Radiat Res 165(3):326–336

    Article  PubMed  CAS  Google Scholar 

  51. Hockel M, Vaupel P (2001) Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. JNCI 93(4):266–276

    Article  PubMed  CAS  Google Scholar 

  52. Papendreou I, Powell A, Lim AL, et al (2005) Cellular reaction to hypoxia: sensing and responding to an adverse environment. Mutat Res 569(1–2):87–100

    Google Scholar 

  53. Semenza GL (2000) HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol 88(4):1474–1480

    PubMed  CAS  Google Scholar 

  54. Gross J, Fuchs J, Machulik A, et al (2005) Apoptosis, necrosis and hypoxia inducible factor-1 in human head and neck squamous cell carcinoma cultures. Int J Oncol 27(3):807–814

    PubMed  CAS  Google Scholar 

  55. Aebersold DM, Burri P, Beer KT, et al (2001) Expression of hypoxia-inducible factor-1alpha: a novel predictive and prognostic parameter in the radiotherapy of oropharyngeal cancer. Cancer Res 61(7):2911–2916

    PubMed  CAS  Google Scholar 

  56. Moeller BJ, Cao Y, Li CY, et al (2004) Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell 5(5):429–441

    Article  PubMed  CAS  Google Scholar 

  57. Greijer AE, van der Wall E (2004) The role of hypoxia inducible factor 1 (HIF-1) in hypoxia induced apoptosis. J Clin Path 57(10):1009–1014

    Article  PubMed  CAS  Google Scholar 

  58. Piret JP, Mottet D, Raes M, et al (2002) Is HIF-1alpha a pro- or an anti-apoptotic protein? Biochem Pharmacol 64(5–6):889–892

    Article  PubMed  CAS  Google Scholar 

  59. Suzuki H, Tomida A, Tsuruo T (2001) Dephosphorylated hypoxia-inducible factor 1alpha as a mediator of p53-dependent apoptosis during hypoxia. Oncogene 20(41):5779–5788

    Article  PubMed  CAS  Google Scholar 

  60. Sowter HM, Ratcliffe PJ, Watson P, et al (2001) HIF-1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors. Cancer Res 61(18):6669–6673

    PubMed  CAS  Google Scholar 

  61. Sonveaux P, Dessy C, Brouet A, et al (2002) Modulation of the tumor vasculature functionality by ionizing radiation accounts for tumor radiosensitization and promotes gene delivery. FASEB J 16(14):1979–1981

    PubMed  CAS  Google Scholar 

  62. Gorski DH, Beckett MA, Jaskowiak NT, et al (1999) Blockage of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation. Cancer Res 59(14):3374–3378

    PubMed  CAS  Google Scholar 

  63. Kumar P, Miller AI, Polverini PJ (2004) p38 MAPK mediates gamma-irradiation-induced endothelial cell apoptosis, and vascular endothelial growth factor protects endothelial cells through the phosphoinositide 3-kinase-Akt-Bcl-2 pathway. J Biol Chem 279(41):43352–43360

    Article  PubMed  CAS  Google Scholar 

  64. Moeller BJ, Cao Y, Li CY, et al (2005) Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell 5(5):429–441

    Article  Google Scholar 

  65. Green DR, Reed JC (1998) Mitochondria and apoptosis. Sci 281(5381):1309–1312

    Article  PubMed  CAS  Google Scholar 

  66. Tamatani M, Mitsuda N, Matsuzaki H, et al (2000) A pathway of neuronal apoptosis induced by hypoxia/reoxygenation: roles of nuclear factor-kappaB and Bcl-2. J Neurochem 75(2):683–693

    Article  PubMed  CAS  Google Scholar 

  67. Basu S, Rosenzweig KR, Youmell M, et al (1998) The DNA-dependent protein kinase participates in the activation of NF kappa B following DNA damage. Biochem Biophys Res Commun 247(1):79–83

    Article  PubMed  CAS  Google Scholar 

  68. Luo JL, Kamata H Karin M (2005) IKK/NF-KB signaling: balancing life and death—a new approach to cancer therapy. J Clin Invest 115(10):2625–2632

    Article  PubMed  CAS  Google Scholar 

  69. Halicka HD, Ardelt B, Li X, et al (1995) 2-Deoxy-D-glucose enhances sensitivity of human histiocytic lymphoma U937 cells to apoptosis induced by tumor necrosis factor. Cancer Res 55(2):444–449

    PubMed  CAS  Google Scholar 

  70. Haga N, Naito M, Seimiya H, et al (1998) 2-Deoxyglucose inhibits chemotherapeutic drug-induced apoptosis in human monocytic leukemia U937 cells with inhibition of C-Jun N-terminal kinase 1/stress-activated protein kinase activation. Int J Cancer 76(1):86–90

    Article  PubMed  CAS  Google Scholar 

  71. Wilhelm S, Roloff S, Hacker G (1997) Inhibition of etoposide-induced apoptotic events by azide. Immunol Lett 59(1):53–59

    Article  PubMed  CAS  Google Scholar 

  72. Munoz-Pinedo C, Ruiz-Ruiz C, Ruiz de Almodovar C, et al (2003) Inhibition of glucose metabolism sensitizes tumor cells to death receptor-triggered apoptosis through enhancement of death-inducing signaling complex formation and apical procaspase-8 processing. J Biol Chem 278(15):12759–12768

    Article  PubMed  CAS  Google Scholar 

  73. Liu X, Kim CN, Yang J, et al (1996) Induction of apoptotic program in cell free extracts: requirement for dATP and cytochrome C. Cell 86(1):147–157

    Article  PubMed  CAS  Google Scholar 

  74. Yasuhara N, Eguchi Y, Tachibana T, et al (1997) Essential role of active nuclear transport in apoptosis. Genes to Cells 2(1):55–64

    Article  PubMed  CAS  Google Scholar 

  75. Lee J, Paull TT (2005) ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Sci 308(5721):551–554

    Article  PubMed  CAS  Google Scholar 

  76. Xu RH, Pelicano H, Zhou Y, et al (2005) Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res 65(2):613–621

    PubMed  CAS  Google Scholar 

  77. Colussi C, Albertini MC, Coppola S, et al (2000) H202-induced block of glycolysis as an active ADP-ribosylation reaction protecting cells from apoptosis. FASEB J 14(14):2266–2276

    Article  PubMed  CAS  Google Scholar 

  78. Danial NN, Gramm CF, Scooano L, et al (2003) BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis. Nature 424(6951):952–956

    Article  PubMed  CAS  Google Scholar 

  79. Pastorino JG, Shulga N, Hoek JB (2002) Mitochondrial binding of hexokinase II inhibits Bax-induced cytochrome c release and apoptosis. J Biol Chem 277(9):7610–7618

    Article  PubMed  CAS  Google Scholar 

  80. Raghunand N, Gatenby RA, Gillies RJ (2003) Microenvironmental and cellular consequences of altered blood flow in tumours. Br J Radiol 76(Spec 1):11–22

    Article  Google Scholar 

  81. Holahan EV, Stuart PK, Dewey WC (1982) Enhancement of survival of CHO cells by acidic pH after x irradiation. Radiat Res 89(2):433–435

    PubMed  CAS  Google Scholar 

  82. Freeman ML, Sierra E (1984) An acidic extracellular environment reduces the fixation of radiation damage. Radiat Res 97(1):154–161

    PubMed  CAS  Google Scholar 

  83. Choi EK, Roberts KP, Griffin RJ, et al (2004) Effect of pH on radiation-induced p53 expression. Int J Radiat Oncol Biol Phys 60(4):1264–1271

    Article  PubMed  CAS  Google Scholar 

  84. Ojeda F, Skardova I, Guarda MI, et al (1996) Radiation-induced apoptosis in thymocytes: pH sensitization. Z Naturforsch 51(5–6):432–434 (Abstract)

    CAS  Google Scholar 

  85. Lee HS, Park HJ, Lyons JC, et al (1997) Radiation-induced apoptosis in different pH environments in vitro. Int J Radiat Oncol Biol Phys 38(5):1079–1087

    Article  PubMed  CAS  Google Scholar 

  86. Park H, Lyons JC, Griffin RJ, et al (2000) Apoptosis and cell cycle progression in an acidic environment after irradiation. Radiat Res 153(3):295–304

    Article  PubMed  CAS  Google Scholar 

  87. Park HJ, Lyons JC, Ohtsubo T, et al (2000) Cell cycle progression and apoptosis after irradiation in an acidic environment. Cell Death Differ 7(8):729–738

    Article  PubMed  CAS  Google Scholar 

  88. Ohtsubo T, Igawa H, Saito T, et al (2001) Acidic environment modifies heat- or radiation-induced apoptosis in human maxillary cancer cells. Int J Radiat Oncol Biol Phys 49(5):1391–1398

    Article  PubMed  CAS  Google Scholar 

  89. Park HJ, Lee SH, Chung H, et al (2003) Influence of environmental pH on G2-phase arrest caused by ionizing radiation. Radiat Res 159(1):86–93

    Article  PubMed  CAS  Google Scholar 

  90. Williams AC, Collard TJ, Paraskeva C (1999) An acidic environment leads to p53 dependent induction of apoptosis in human adenoma and carcinoma cell lines: implications for clonal selection during colorectal carcinogenesis. Oncogene 18(21):3199–3204

    Article  PubMed  CAS  Google Scholar 

  91. Schmaltz C, Hardenbergh PH, Wells A, et al (1998) Regulation of proliferation-survival decisions during tumor cell hypoxia. Mol Cell Biol 18(5):2845–2854

    PubMed  CAS  Google Scholar 

  92. Pena LA, Fuks Z, Kolesnick R (1997) Stress-induced apoptosis and the sphingomyelin pathway. Biochem Pharmacol 53(5):615–621

    Article  PubMed  CAS  Google Scholar 

  93. Matsuyama S, Llopis J, Deveraux QL, et al (2000) Changes in intramitochondrial and cytosolic pH: early events that modulate caspase activation during apoptosis. Nat Cell Biol 2(6):318–325

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alistair Hunter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hunter, A., Hendrikse, A., Renan, M. et al. Does the tumor microenvironment influence radiation-induced apoptosis?. Apoptosis 11, 1727–1735 (2006). https://doi.org/10.1007/s10495-006-9789-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-006-9789-1

Keywords

Navigation