Skip to main content

Advertisement

Log in

A promising action of riboflavin as a mediator of leukaemia cell death

  • Report
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Besides having a pivotal biological function as a component of coenzymes, riboflavin appears a promissing antitumoral agent, but the underlying molecular mechanism remains unclear. In this work, we demonstrate that irradiated riboflavin, when applied at μM concentrations, induces an orderly sequence of signaling events finally leading to leukemia cell death. The molecular mechanism involved is dependent on the activation of caspase 8 caused by overexpression of Fas and FasL and also on mitochondrial amplification mechanisms, involving the stimulation of ceramide production by sphingomyelinase and ceramide synthase. The activation of this cascade led to an inhibition of mitogen activated protein kinases: JNK, MEK and ERK and survival mediators (PKB and IAP1), upregulation of the proapoptotic Bcl2 member Bax and downregulation of cell cycle progression regulators. Importantly, induction of apoptosis by irradiated riboflavin was leukaemia cell specific, as normal human lymphocytes did not respond to the compound with cell death. Our data indicate that riboflavin selectively activates Fas cascade and also constitutes a death receptor-engaged drug without harmful side effects in normal cells, bolstering the case for using this compound as a novel avenue for combating cancerous disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ERK:

extracellular signal-regulated kinase

Fas (CD95):

Fas receptor

FasL (CD95L):

Fas ligand

HL60:

human myeloid leukemia cell line

IAP1:

inhibitory apoptosis protein type 1

JNK:

c-jun-NH2-terminal protein kinase

MAPK:

mitogen-activated protein kinase

MEK:

MAPK/ERK kinase

PCNA:

proliferating cell nuclear antigen

PKB:

protein kinase B

PP2A:

phosphoprotein phosphatase 2A

RF:

riboflavin

STAT:

signal transducer and activator of transcription

TNF:

tumor necrosis factor

TNFR:

tumor necrosis factor receptor

TRAF:

receptor-associated factor.

References

  1. Peng Q, Nesland JM (2004) Effects of photodynamic therapy on tumor stroma. Ultrastruct Pathol 28:333–340

    Article  PubMed  Google Scholar 

  2. Edwards AM, Barredo F, Silva E, De Ioannes AE, Becker MI (1999b) Apoptosis induction in nonirradiated human HL60 and murine NOS/2 tumor cells by photoproducts of índole-3-acetic acid and riboflavin. Photochem Photobiol 70:645–649

    Article  PubMed  CAS  Google Scholar 

  3. Souza ACS, Cavagis ADM, Jucá MB, Ferreira CV, Aoyama H, Peppelenbosch MP (2005) Riboflavin: a multifunctional vitamin. Quim Nova 28:887–891

    Google Scholar 

  4. Meisel D, Neta P (1975) One electron reduction potential of riboflavin studied by pulse radiolysis. J Phys Chem 79:2459–2461

    Article  CAS  Google Scholar 

  5. Ahmad I, Fasihullah Q, Noor A, Ansari IA, Ali QNM (2004a) Photolysis of riboflavin in aqueous solution: a kinetic study. Int J Pharm 280:199–208

    Article  PubMed  CAS  Google Scholar 

  6. Ahmad I, Fasihullah Q, Vaid FHM (2004b) A study of simultaneous photolysis and photoaddition reactions of riboflavin in aqueous solution. J Photochem Photobiol B: Biol 75:13–20

    Article  CAS  Google Scholar 

  7. Holzer W, Shirdel J, Penzkofer AH, Deutzmann R, Hochmuth E (2005) Photo-induced degradation of some flavins in aqueous solution. Chem Phys 308:69–78

    Article  CAS  Google Scholar 

  8. Silva E, Ugarte R, Andrade A, Edwards AM (1994) Riboflavin-sensitized photoprocesses of tryptophan. J Photochem Photobiol B: Biol 23:43–48

    Article  CAS  Google Scholar 

  9. Edwards AM, Silva E (2001) Effect of visible light on selected enzymes, vitamins and amino acids. J Photochem Photobiol B: Biol 63:126–131

    Article  CAS  Google Scholar 

  10. Edwards AM, Bueno C, Saldaño A, Kassab K, Polo L, Jori G (1999a) Photochemical and pharmacokinetc properties of select flavins. J Photochem Photobiol B: Biol 48:36–41

    Article  CAS  Google Scholar 

  11. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assay. J Immunol Meth 65:55–63

    Article  CAS  Google Scholar 

  12. Denizot F, Lang R (1986) Rapid colorimetric assay for cell growth and survival: modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Meth 89:71–77

    Article  Google Scholar 

  13. Akerman KE, Wikstrom MK (1976) Safranine as a probe of the mitochondrial membrane potential. FEBS Lett 68:191–197

    Article  PubMed  CAS  Google Scholar 

  14. Hartree EF (1972) Determination of proteins: a modification of Lowry method that give a linear photometric response. Anal Biochem 48:422–427

    Article  PubMed  CAS  Google Scholar 

  15. Edwards AM, Silva E, Jofré B, Becker MI, De Ioannes AE (1994) Visible light effects on tumoral cells in a culture medium enriched with tryptophan and riboflavin. J Photochem Photobiol B: Biol 24:179–186

    Article  CAS  Google Scholar 

  16. Siskind LJ (2005) Mitochondrial Ceramide and the induction of apoptosis. J Bioenergetics and Biomembranes 37:143–153

    Article  CAS  Google Scholar 

  17. Cremesti AE, Goni FM, Kolesnick R (2002) Role of sphingomyelinase and ceramide in modulating rafts: do biophysical properties determine biologic outcome? FEBS Lett 531:47–53

    Article  PubMed  CAS  Google Scholar 

  18. Huang ST, Yang RC, Chen MY, Pang JH (2004) Phyllanthus urinaria induces the Fas receptor/ligand expression and ceramide-mediated apoptosis in Hl60 cells. Life Sci 75:339–351

    Article  PubMed  CAS  Google Scholar 

  19. Miyaji M, Jin ZX, Yamaoka S, Amakawa R, Fukuhara S, Sato SB, Kobayashi T, Domae N, Mimori T, Bloom ET, Okazaki T, Umehara H (2005) Role of membrane sphingomyelin and ceramide in platform formation for Fas-mediated apoptosis. J Exp Med 202:249–259

    Article  PubMed  CAS  Google Scholar 

  20. Rotolo JA, Zhang J, Donepudi M, Lee H, Fuks Z, Kolesnick R (2005) Caspase-dependent and–independent activation of acid sphingomyelinase signaling. J Biol Chem 280:26425–26434

    Article  PubMed  CAS  Google Scholar 

  21. Verheij M, Bose R, Lin XH, Yao B, Jarvis WD, Grant S, Birrer MJ, Szabo E, Zon LI, Kyriakis JM, Haimovitz-Friedman A, Fuks Z, Kolesnick RN (1996) Requirement for ceramide-initiated SAPK/JNK signalling in stress-induced apoptosis. Nature 380:75–79

    Article  PubMed  CAS  Google Scholar 

  22. Hetz CA, Hunn M, Rojas P, Torres V, Leyton L, Quest AF (2002) Caspase-dependent initiation of apoptosis and necrosis by the Fas receptor in lymphoid cells: onset of necrosis is associated with delayed ceramide increase. J Cell Sci 115:4671–4683

    Article  PubMed  CAS  Google Scholar 

  23. Huang H, Chen Y, Wu Y (2005) Mitochondria-dependent apoptosis induced by a novel amphipathic photochemotherapeutic agent ZnPcS2P2 in HL60 cells. Acta Pharmacol Sin 26:1138–1144

    Article  PubMed  CAS  Google Scholar 

  24. Woods AL, Hall PA, Shepherd NA, Hanby AM, Waseem NH, Lane DP, Levison DA (1991) The assessment of proliferating cell nuclear antigen (PCNA) immunostaining in primary gastrointestinal lymphomas and its relationship to histological grade, S + G2 + M phase fraction (flow cytometric analysis) and prognosis. Histopathology 19:21–27

    PubMed  CAS  Google Scholar 

  25. Xia L, Zheng L, Lee HW, Bates SE, Federico L, Shen B, O’Connor TR (2005) Human 3-methyladenine-DNA glycosylase: effect of sequence context on excision, association with PCNA, and stimulation by AP endonuclease. J Mol Biol 346:1259–1274

    Article  PubMed  CAS  Google Scholar 

  26. Steinman RA, Huang J, Yaroslavskiy B, Goff JP, Ball ED, Nguyen A (1998) Regulation of p21 (WAF1) expression during normal myeloid differentiation. Blood 91:4531–4542

    PubMed  CAS  Google Scholar 

  27. Wang Y, Wu TR, Cai S, Welte T, Chin YE (2000) Stat1 as a component of tumor necrosis factor alpha receptor 1-TRADD signaling complex to inhibit NF-kappaB activation. Mol Cell Biol 20:4505–4512

    Article  PubMed  CAS  Google Scholar 

  28. Das D, Pintucci G, Stern A (2000) MAPK-dependent expression of p21(WAF) and p27(kip1) in PMA-induced differentiation of HL60 cells. FEBS Lett 472:50–52

    Article  PubMed  CAS  Google Scholar 

  29. Asada M, Ohmi K, Delia D, Enosawa S, Suzuki S, You A, Suzuki H, Mizutani S (2004) Brap2 functions as a cytoplasmic retention protein for p21 during monocyte differentiation. Mol Cell Biol 24:8236–8243

    Article  PubMed  CAS  Google Scholar 

  30. Zhang ZY (2003) Chemical and mechanistic approaches to the study of protein tyrosine phosphatases. Acc Chem Res 36:385–92

    Article  PubMed  CAS  Google Scholar 

  31. Aoyama H, Silva TMA, Miranda MA, Ferreira CV (2003) Proteínas tirosina fosfatases: propriedades e funções biológicas. Quim Nova 26:896–900

    CAS  Google Scholar 

  32. McCluskey A, Ackland SP, Bowyer MC, Baldwin ML, Garner J, Walkom CC, Sakoff JA (2003) Cantharidin analogues: synthesis and evaluation of growth inhibition in a panel of selected tumor cell lines. Bioorg Chem 31:68–79

    Article  PubMed  CAS  Google Scholar 

  33. Uzunoglu S, Uslu R, Tobu M, Saydam G, Terzioglu E, Buyukkececi F, Omay SB (1999) Augmentation of methylprednisolone-induced differentiation of myeloid leukemia cells by serine/threonine phosphatase inhibitors. Leuk Res 23:507–512

    Article  PubMed  CAS  Google Scholar 

  34. Bhoola R, Hammond K (2000) Modulation of the rhythmic patterns of expression of phosphoprotein phosphatases in human leukaemia cells. Cell Biol Int 24:539–547.

    Article  PubMed  CAS  Google Scholar 

  35. Brantley-Finley C, Lyle CS, Du L, Goodwin ME, Hall TS, DK, G P, Chambers T (2003) The JNK, ERK and p53 pathways play distinct roles in apoptosis mediated by the antitumor agents vinblastine, doxorubicin, and etoposide. Biochem Pharmacol 66:459–469

  36. Lee JT Jr, McCubrey JA (2002) The Raf/MEK/ERK signal transduction cascade as a target for chemotherapeutic intervention in leukemia. Leukemia 16:486–507

    Article  PubMed  CAS  Google Scholar 

  37. Roux PP, Blenis J (2004) ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev 68:320–344

    Article  PubMed  CAS  Google Scholar 

  38. Chen F, Wang Q, Wang X and Studzinski GP (2004) Up-regulation of Egr1 by 1,25-dihydroxyvitamin D3 contributes to increased expression of p35 activator of cyclin-dependent kinase 5 and consequent onset of the terminal phase of HL60 cell differentiation. Cancer Res 64:5425–5433

    Article  PubMed  CAS  Google Scholar 

  39. Holmstrom TH, Schmitz I, Soderstrom TS, Poukkula M, Johnson VL, Chow SC, Krammer PH, Eriksson JE (2000) MAPK/ERK signaling in activated T cells inhibits CD95/Fas-mediated apoptosis downstream of DISC assembly. EMBO J 19:5418–5428

    Article  PubMed  CAS  Google Scholar 

  40. Tran SE, Holmstrom TH, Ahonen M, Kahari VM, Eriksson JE (2001) MAPK/ERK overrides the apoptotic signaling from Fas, TNF, and TRAIL receptors. J Biol Chem 276:16484–1690

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Veríssima Ferreira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Souza, A.C.S., Kodach, L., Gadelha, F.R. et al. A promising action of riboflavin as a mediator of leukaemia cell death. Apoptosis 11, 1761–1771 (2006). https://doi.org/10.1007/s10495-006-9549-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-006-9549-2

Keywords

Navigation