Skip to main content

Advertisement

Log in

Antizyme, a natural ornithine decarboxylase inhibitor, induces apoptosis of haematopoietic cells through mitochondrial membrane depolarization and caspases’ cascade

  • Report
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Antizymes delicately regulate ornithine decarboxylase (ODC) enzyme activity and polyamine transportation. One member of the family, antizyme-1, plays vital roles in molecular and cellular functions, including developmental regulation, cell cycle, proliferation, cell death, differentiation and tumorigenesis. However, the question of how does it participate in the cell apoptotic mechanism is still unsolved. To elucidate the contribution of human antizyme-1 in haematopoietic cell death, we examine whether inducible overexpression of antizyme enhances apoptotic cell death. Antizyme reduced the viability in a dose- and time-dependent manner of human leukemia HL-60 cells, acute T leukemia Jurkat cells and mouse macrophage RAW 264.7 cells. The apoptosis-inducing activities were determined by nuclear condensation, DNA fragmentation, sub-G1 appearance, loss of mitochondrial membrane potential (Δψ m ), release of mitochondrial cytochrome c into cytoplasm and proteolytic activation of caspase 9 and 3. Following conditional antizyme overexpression, all protein levels of cyclin-dependent kinases (Cdks) and cyclins are not significantly reduced, except cyclin D, before their entrance into apoptotic cell death. However, introduced cyclin D1 into Jurkat T tetracycline (Tet)-On cell system still couldn’t rescue cells from apoptosis. Antizyme doesn’t influence the expression of tumor suppressor p53 and its downstream p21, but it interferes in the expressions of Bcl-2 family. Inducible antizyme largely enters mitochondria resulting in cytochrome c release from mitochondria to cytosol following Bcl-xL decrease and Bax increase. According to these data, we suggest that antizyme induces apoptosis mainly through mitochondria-mediated and cell cycle-independent pathway. Furthermore, antizyme induces apoptosis not only by Bax accumulation reducing the function of the Bcl-2 family, destroying the Δψ m , and releasing cytochrome c to cytoplasm but also by the activation of apoptosomal caspase cascade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ODC:

ornithine decarboxylase

AZI:

antizyme inhibitor

Δψ m :

mitochondrial membrane potential

References

  1. Heller JS, Fong WF, Canellakis ES (1976) Induction of a protein inhibitor to ornithine decarboxylase by the end products of its reaction. Proc Natl Acad Sci USA 73:1858–1862

    Article  PubMed  CAS  Google Scholar 

  2. Tabor CW, Tabor H (1984) Polyamines. Annu Rev Biochem 53:749–790

    Article  PubMed  CAS  Google Scholar 

  3. Pendeville H, Carpino N, Marine JC, et al (2001) The ornithine decarboxylase gene is essential for cell survival during early murine development. Mol Cell Biol 21:6549–6558

    Article  PubMed  CAS  Google Scholar 

  4. Liu GY, Hung YC, Hsu PC, et al (2005) Ornithine decarboxylase prevents tumor necrosis factor alpha-induced apoptosis by decreasing intracellular reactive oxygen species. Apoptosis 10:569–581

    Article  PubMed  CAS  Google Scholar 

  5. Huang CC, Hsu PC, Hung YC, et al (2005) Ornithine decarboxylase prevents methotrexate-induced apoptosis by reducing intracellular reactive oxygen species production. Apoptosis 10:895–907

    Article  PubMed  CAS  Google Scholar 

  6. Hsu PC, Hour TC, Liao YF, et al (2006) Increasing ornithine decarboxylase activity is another way of prolactin preventing methotrexate-induced apoptosis: Crosstalk between ODC and BCL-2. Apoptosis 11:389–399

    Article  PubMed  CAS  Google Scholar 

  7. Pegg AE (2006) Regulation of ornithine decarboxylase. J Biol Chem 281:14529–14532

    Article  PubMed  CAS  Google Scholar 

  8. Medina MA, Quesada AR, Nunez de Castro I, Sanchez-Jimenez F (1999) Histamine, polyamines, and cancer. Biochem Pharmacol 57:1341–1344

    Article  PubMed  CAS  Google Scholar 

  9. Thomson SC, Deng A, Bao D, Satriano J, Blantz RC, Vallon V (2001) Ornithine decarboxylase, kidney size, and the tubular hypothesis of glomerular hyperfiltration in experimental diabetes. J Clin Invest 107:217–224

    Article  PubMed  CAS  Google Scholar 

  10. Furumitsu Y, Yukioka K, Yukioka M, et al (2000) Interleukin-1beta induces elevation of spermidine/spermine N1-acetyltransferase activity and an increase in the amount of putrescine in synovial adherent cells from patients with rheumatoid arthritis. J Rheumatol 27:1352–1357

    PubMed  CAS  Google Scholar 

  11. Hsu HC, Thomas T, Sigal LH, Thomas TJ (1999) Polyamine-fas interactions: inhibition of polyamine biosynthesis in MRL-lpr/lpr mice is associated with the up-regulation of fas mRNA in thymocytes. Autoimmunity 29:299–309

    Article  PubMed  CAS  Google Scholar 

  12. Deng A, Munger KA, Valdivielso JM, et al (2003) Increased expression of ornithine decarboxylase in distal tubules of early diabetic rat kidneys: are polyamines paracrine hypertrophic factors? Diabetes 52:1235–1239

    PubMed  CAS  Google Scholar 

  13. Schluter KD, Frischkopf K, Flesch M, Rosenkranz S, Taimor G, Piper HM (2000) Central role for ornithine decarboxylase in beta-adrenoceptor mediated hypertrophy. Cardiovasc Res 45:410–417

    Article  PubMed  CAS  Google Scholar 

  14. Johnson TD (1998) Polyamines and cerebral ischemia. Prog Drug Res 50:193–258

    PubMed  CAS  Google Scholar 

  15. Morrison LD, Cao XC, Kish SJ (1998) Ornithine decarboxylase in human brain: influence of aging, regional distribution, and Alzheimer’s disease. J Neurochem 71:288–294

    Article  PubMed  CAS  Google Scholar 

  16. Gritli-Linde A, Nilsson J, Bohlooly YM, Heby O, Linde A (2001) Nuclear translocation of antizyme and expression of ornithine decarboxylase and antizyme are developmentally regulated. Dev Dyn 220:259–275

    Article  PubMed  CAS  Google Scholar 

  17. Newman RM, Mobascher A, Mangold U, et al (2004) Antizyme targets cyclin D1 for degradation. A novel mechanism for cell growth repression. J Biol Chem 279:41504–41511

    Article  PubMed  CAS  Google Scholar 

  18. Fong LY, Feith DJ, Pegg AE (2003) Antizyme overexpression in transgenic mice reduces cell proliferation, increases apoptosis, and reduces N-nitrosomethylbenzylamine-induced forestomach carcinogenesis. Cancer Res 63:3945–3954

    PubMed  CAS  Google Scholar 

  19. Tsuji T, Usui S, Aida T, et al (2001) Induction of epithelial differentiation and DNA demethylation in hamster malignant oral keratinocyte by ornithine decarboxylase antizyme. Oncogene 20:24–33

    Article  PubMed  CAS  Google Scholar 

  20. Feith DJ, Origanti S, Shoop PL, Sass-Kuhn S, Shantz LM (2006) Tumor suppressor activity of ODC antizyme in MEK-driven skin tumorigenesis1. Carcinogenesis 27:1090–1098

    Article  PubMed  CAS  Google Scholar 

  21. Coffino P (2001) Antizyme, a mediator of ubiquitin-independent proteasomal degradation. Biochimie 83:319–323

    Article  PubMed  CAS  Google Scholar 

  22. Matsufuji S, Matsufuji T, Miyazaki Y, et al (1995) Autoregulatory frameshifting in decoding mammalian ornithine decarboxylase antizyme. Cell 80:51–60

    Article  PubMed  CAS  Google Scholar 

  23. Zhou A, Hassel BA, Silverman RH (1993) Expression cloning of 2-5A-dependent RNAase: a uniquely regulated mediator of interferon action. Cell 72:753–765

    Article  PubMed  CAS  Google Scholar 

  24. Le Roy F, Salehzada T, Bisbal C, Dougherty JP, Peltz SW (2005) A newly discovered function for RNase L in regulating translation termination. Nat Struct Mol Biol 12:505–512

    Article  PubMed  CAS  Google Scholar 

  25. Domingo-Gil E, Esteban M (2006) Role of mitochondria in apoptosis induced by the 2-5A system and mechanisms involved. Apoptosis 11:725–738

    Article  PubMed  CAS  Google Scholar 

  26. Hoshino K, Momiyama E, Yoshida K, et al (2005) Polyamine transport by mammalian cells and mitochondria: role of antizyme and glycosaminoglycans. J Biol Chem 280:42801–42808

    Article  PubMed  CAS  Google Scholar 

  27. Gandre S, Bercovich Z, Kahana C (2003) Mitochondrial localization of antizyme is determined by context-dependent alternative utilization of two AUG initiation codons. Mitochondrion 2:245–256

    Article  PubMed  CAS  Google Scholar 

  28. Stefanelli C, Stanic I, Zini M, et al (2000) Polyamines directly induce release of cytochrome c from heart mitochondria. Biochem J 347:875–880

    Article  PubMed  CAS  Google Scholar 

  29. Mangold U, Leberer E (2005) Regulation of all members of the antizyme family by antizyme inhibitor. Biochem J 385:21–28

    Article  PubMed  CAS  Google Scholar 

  30. Bercovich Z, Kahana C (2004) Degradation of antizyme inhibitor, an ornithine decarboxylase homologous protein, is ubiquitin-dependent and is inhibited by antizyme. J Biol Chem 279:54097–54102

    Article  PubMed  CAS  Google Scholar 

  31. Asher G, Bercovich Z, Tsvetkov P, Shaul Y, Kahana C (2005) 20S proteasomal degradation of ornithine decarboxylase is regulated by NQO1. Mol Cell 17:645–655

    Article  PubMed  CAS  Google Scholar 

  32. Keren-Paz A, Bercovich Z, Porat Z, Erez O, Brener O, Kahana C (2006) Overexpression of antizyme-inhibitor in NIH3T3 fibroblasts provides growth advantage through neutralization of antizyme functions. Oncogene (in press)

  33. Gilmore AP (2005) Anoikis. Cell Death Differ 12:1473–1477

    Article  PubMed  CAS  Google Scholar 

  34. Levine B (2005) Eating oneself and uninvited guests: autophagy-related pathways in cellular defense. Cell 120:159–162

    PubMed  CAS  Google Scholar 

  35. Formigli L, Papucci L, Tani A, et al (2000) Aponecrosis: morphological and biochemical exploration of a syncretic process of cell death sharing apoptosis and necrosis. J Cell Physiol 182:41–49

    Article  PubMed  CAS  Google Scholar 

  36. Lemasters JJ V (1999) Necrapoptosis and the mitochondrial permeability transition: shared pathways to necrosis and apoptosis. Am J Physiol 276:G1–G6

    PubMed  CAS  Google Scholar 

  37. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    PubMed  CAS  Google Scholar 

  38. Zhong Q, Gao W, Du F, Wang X (2005) Mule/ARF-BP1, a BH3-only E3 ubiquitin ligase, catalyzes the polyubiquitination of Mcl-1 and regulates apoptosis. Cell 121:1085–1095

    Article  PubMed  CAS  Google Scholar 

  39. Kastan MB, Zhan Q, el-Deiry WS, et al (1992) A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71:587–597

    Article  PubMed  CAS  Google Scholar 

  40. Lowe SW, Schmitt EM, Smith SW, Osborne BA, Jacks T (1993) p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362:847–849

    Article  PubMed  CAS  Google Scholar 

  41. Woodworth CD, Wang H, Simpson S, Alvarez-Salas LM, Notario V (1993) Overexpression of wild-type p53 alters growth and differentiation of normal human keratinocytes but not human papillomavirus-expressing cell lines. Cell Growth Differ 4:367–376

    PubMed  CAS  Google Scholar 

  42. Weinberg WC, Azzoli CG, Chapman K, Levine AJ, Yuspa SH (1995) p53-mediated transcriptional activity increases in differentiating epidermal keratinocytes in association with decreased p53 protein. Oncogene 10:2271–22799

    PubMed  CAS  Google Scholar 

  43. Hall PA, McKee PH, Menage HD, Dover R, Lane DP (1993) High levels of p53 protein in UV-irradiated normal human skin. Oncogene 8:203–207

    PubMed  CAS  Google Scholar 

  44. Berg RJ, van Kranen HJ, Rebel HG, et al (1996) Early p53 alterations in mouse skin carcinogenesis by UVB radiation: immunohistochemical detection of mutant p53 protein in clusters of preneoplastic epidermal cells. Proc Natl Acad Sci USA 93:274–278

    Article  PubMed  CAS  Google Scholar 

  45. Li G, Mitchell DL, Ho VC, Reed JC, Tron VA (1996) Decreased DNA repair but normal apoptosis in ultraviolet-irradiated skin of p53-transgenic mice. Am J Pathol 148:1113–1123

    PubMed  CAS  Google Scholar 

  46. Appella E, Anderson CW (2000) Signaling to p53: breaking the posttranslational modification code. Pathol Biol (Paris) 48:227–245

    CAS  Google Scholar 

  47. Munoz-Alonso MJ, Acosta JC, Richard C, Delgado MD, Sedivy J, Leon J (2005) p21Cip1 and p27Kip1 induce distinct cell cycle effects and differentiation programs in myeloid leukemia cells. J Biol Chem 280:18120–18129

    Article  PubMed  CAS  Google Scholar 

  48. Sherr CJ, Roberts JM (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13:1501–1512

    PubMed  CAS  Google Scholar 

  49. Gilmour SK, Birchler M, Smith MK, Rayca K, Mostochuk J (1999) Effect of elevated levels of ornithine decarboxylase on cell cycle progression in skin. Cell Growth Differ 10:739–748

    PubMed  CAS  Google Scholar 

  50. Norbury CJ, Zhivotovsky B (2004) DNA damage-induced apoptosis. Oncogene 23:2797–2808

    Article  PubMed  CAS  Google Scholar 

  51. Chao DT, Korsmeyer SJ (1998) BCL-2 family: regulators of cell death. Annu Rev Immunol 16:395–419

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H.-C. Hung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, GY., Liao, YF., Hsu, PC. et al. Antizyme, a natural ornithine decarboxylase inhibitor, induces apoptosis of haematopoietic cells through mitochondrial membrane depolarization and caspases’ cascade. Apoptosis 11, 1773–1788 (2006). https://doi.org/10.1007/s10495-006-9512-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-006-9512-2

Keywords

Navigation