Skip to main content
Log in

DEDD association with cytokeratin filaments correlates with sensitivity to apoptosis

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The cytokeratin 8/18 (CK8/18) cytoskeleton network is an early target for caspase cleavage during apoptosis. Recent reports suggest that the highly conserved and ubiquitous death effector domain containing DNA binding protein (DEDD) plays a role in the recruitment of procaspase-9 and -3 at this CK8/18 scaffold. DEDD interacts with both the CK8/18 intermediate filament network and procaspase-3 and –9. It is suggested that the CK8/18 fibrils may provide a scaffold for the proximity-induced autocleavage and activation of procaspase-9 in close association with caspase-3.

We addressed this issue by investigating DEDD staining patterns in various cell lines and by correlating these expression patterns with the sensitivity of these cell lines for roscovitine-induced apoptosis. We showed that in some cell lines DEDD revealed a bright filamentous staining pattern in others DEDD staining was weak and diffusely distributed in the cytoplasm of the cells. The difference in staining patterns was irrespective of the phosphorylation status of the cytokeratin filaments. In cells showing a filamentous staining pattern, DEDD was strongly associated with the CK8/18 cytokeratin filaments as evidenced by double immunofluorescence and its resistance to extraction with Triton X-100. Subcellular fractionation indicates that DEDD co-purifies with CK18, which corroborates a strong association of DEDD and the cytokeratin network. DEDD was either mono- or diubiquinated. Cells showing a filamentous DEDD distribution are more apoptosis-prone as evidenced by the rapid appearance of M30 CytoDeath-positive cells after induction of apoptosis. The sensitivity towards apoptosis is irrespective of the procaspase-3 content of the cells. Our data support the notion that DEDD-mediated accumulation of procaspases at the cytokeratin scaffold leads to an increase in the local concentration, which renders cells more apoptosis-prone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. van Engeland M, Kuijpers HJ, Ramaekers FCS, Reutelingsperger CP, Schutte B (1997) Plasma membrane alterations and cytoskeletal changes in apoptosis. Exp Cell Res 235:421–430

    Article  PubMed  CAS  Google Scholar 

  2. Leers MP, Kölgen W, Björklund V, Bergman T, Tribbick G, Persson B, Björklund P, Ramaekers FCS, Björklund B, Nap M, Jörnvall H, Schutte B (1999) Immunocytochemical detection and mapping of a cytokeratin 18 neo-epitope exposed during early apoptosis. J Pathol 187:567–572

    Article  PubMed  CAS  Google Scholar 

  3. Schutte B, Henfling M, Kölgen W, Bouman M, Meex S, Leers MPG, Nap M, Björklund V, Björklund P, Björklund B, Lane EB, Bishr Omary M, Jörnvall H, Ramaekers FCS (2004) Keratin 8/18 breakdown and reorganization during apoptosis. Exp Cell Res 297:11–26

    Article  PubMed  CAS  Google Scholar 

  4. Oshima RG (2002) Apoptosis and keratin intermediate filaments. Cell Death Differ 9:486–492

    Article  PubMed  CAS  Google Scholar 

  5. Caulin C, Salvesen GS, Oshima RG (1997) Caspase cleavage of keratin 18 and reorganization of intermediate filaments during epithelial cell apoptosis. J Cell Biol 138:1379–1394

    Article  PubMed  CAS  Google Scholar 

  6. Lee JC, Schickling O, Stegh AH, Oshima RG, Dinsdale D, Cohen GM, Peter ME (2002) DEDD regulates degradation of intermediate filaments during apoptosis. J Cell Biol 158:1051–1066

    Article  PubMed  CAS  Google Scholar 

  7. Dinsdale D, Lee JC, Dewson G, Cohen GM, Peter ME (2004) Intermediate filaments control the intracellular distribution of caspases during apoptosis. Am J Pathol 164:395–407

    PubMed  CAS  Google Scholar 

  8. Thornberry NA, Lazebnik Y (1998) Caspases: Enemies Within. Science 281:1312–1316

    Article  PubMed  CAS  Google Scholar 

  9. Srinivasula S, Ahmad M, Fernandes-Alnemri T, Alnemri E (1998) Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization. Mol Cell 1:949–957

    Article  PubMed  CAS  Google Scholar 

  10. Bratton S, Lewis J, Butterworth M, Duckett C, Cohen G (2002) XIAP inhibition of caspase-3 preserves its association with the Apaf-1 apoptosome and prevents CD95- and Bax-induced apoptosis. Cell Death Differ 9:881–892

    Article  PubMed  CAS  Google Scholar 

  11. Srinivasula SM, Hegde R, Saleh A, Datta P, Shiozaki E, Chai J, Lee R-A, Robbins PD, Fernandes-Alnemri T, Shi Y, Alnemri ES (2001) A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature 410:112–116

    Article  PubMed  CAS  Google Scholar 

  12. Holcik M, Korneluk R (2001) XIAP, the guardian angel. Nat Rev Mol Cell Biol. 2:550–556

    Article  PubMed  CAS  Google Scholar 

  13. Schickling O, Stegh A, Byrd J, Peter M (2001) Nuclear localization of DEDD leads to caspase-6 activation through its death effector domain and inhibition of RNA polymerase I dependent transcription. Cell Death Differ 8:1157–1168

    Article  PubMed  CAS  Google Scholar 

  14. Renatus M, Stennicke HR, Scott FL, Liddington RC, Salvesen GS (2001) Dimer formation drives the activation of the cell death protease caspase 9. PNAS 98:14250–14255

    Article  PubMed  CAS  Google Scholar 

  15. Stumptner C, Omary MB, Fickert P, Denk H, Zatloukal K (2000) Hepatocyte Cytokeratins Are Hyperphosphorylated at Multiple Sites in Human Alcoholic Hepatitis and in a Mallory Body Mouse Model. Am J Pathol 156:77–90

    PubMed  CAS  Google Scholar 

  16. Lee J, Wang G, Schickling O, Peter M (2005) Fusing DEDD with ubiquitin changes its intracellular localization and apoptotic potential. Apoptosis 10:1483–1495

    Article  PubMed  CAS  Google Scholar 

  17. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  18. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    Article  PubMed  CAS  Google Scholar 

  19. Janicke RU, Sprengart ML, Wati MR, Porter AG (1998) Caspase-3 Is required for DNA fragmentation and morphological changes associated with apoptosis. J Biol Chem 273:9357–9360

    Article  PubMed  CAS  Google Scholar 

  20. Oberhammer F, Hochegger K, Froschl G, Tiefenbacher R, Pavelka M (1994) Chromatin condensation during apoptosis is accompanied by degradation of lamin A and B, without enhanced activation of cdc2 kinase. J Cell Biol 126:827–837

    Article  PubMed  CAS  Google Scholar 

  21. Guo Y, Srinivasula SM, Druilhe A, Fernandes-Alnemri T, Alnemri ES (2002) Caspase-2 induces apoptosis by releasing proapoptotic proteins from mitochondria. J Biol Chem 277:13430–13437

    Article  PubMed  CAS  Google Scholar 

  22. Robertson JD, Enoksson M, Suomela M, Zhivotovsky B, Orrenius S (2002) Caspase-2 acts upstream of mitochondria to promote cytochrome c release during etoposide-induced apoptosis. J Biol Chem 277:29803–29809

    Article  PubMed  CAS  Google Scholar 

  23. McManus D, Lefebvre C, Cherton-Horvat G, St-Jean M, Kandimalla E, Agrawal S, Morris S, Durkin J, Lacasse E (2004) Loss of XIAP protein expression by RNAi and antisense approaches sensitizes cancer cells to functionally diverse chemotherapeutics. Oncogene 23:8105–8117

    Article  PubMed  CAS  Google Scholar 

  24. Inada H, Izawa I, Nishizawa M, Fujita E, Kiyono T, Takahashi T, Momoi T, Inagaki M (2001) Keratin attenuates tumor necrosis factor-induced cytotoxicity through association with TRADD. J Cell Biol 155:415–426

    Article  PubMed  CAS  Google Scholar 

  25. Gilbert S, Loranger A, Marceau N (2004) Keratins modulate c-Flip/extracellular signal-regulated kinase 1 and 2 antiapoptotic signaling in simple epithelial cells. Mol Cell Biol 24:7072–7081

    Article  PubMed  CAS  Google Scholar 

  26. Caulin C, Ware CF, Magin TM, Oshima RG (2000) Keratin-dependent, epithelial resistance to tumor necrosis factor-induced apoptosis. J Cell Biol 149:17–22

    Article  PubMed  CAS  Google Scholar 

  27. Gilbert S, Loranger A, Daigle N, Marceau N (2001) Simple epithelium keratins 8 and 18 provide resistance to Fas-mediated apoptosis. The protection occurs through a receptor-targeting modulation. J Cell Biol 154:763–773

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bert Schutte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schutte, B., Henfling, M. & Ramaekers, F.C.S. DEDD association with cytokeratin filaments correlates with sensitivity to apoptosis. Apoptosis 11, 1561–1572 (2006). https://doi.org/10.1007/s10495-006-9113-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-006-9113-0

Keywords

Navigation