NAG-1 up-regulation mediated by EGR-1 and p53 is critical for quercetin-induced apoptosis in HCT116 colon carcinoma cells

Abstract

Quercetin, a flavonoid molecule ubiquitously present in nature, has multiple effects on cancer cells, including the inhibition of cell proliferation and migration. However, the responsible molecular mechanisms are not fully understood. We found that quercetin induces the expression of NAG-1 (Non-steroidal anti-inflammatory drug activated gene-1), a TGF-β superfamily protein, during quercetin-induced apoptosis of HCT116 human colon carcinoma cells. Reporter assays using the luciferase constructs containing NAG-1 promoter region demonstrate that early growth response-1 (EGR-1) and p53 are required for quercetin-mediated activation of the NAG-1 promoter. Overexpression of NAG-1 enhanced the apoptotic effect of quercetin, but suppression of quercetin-induced NAG-1 expression by NAG-1 siRNA attenuated quercetin-induced apoptosis in HCT116 cells. Taken together, the present study demonstrates for the first time that quercetin induces apoptosis via NAG-1, providing a mechanistic basis for the apoptotic effect of quercetin in colon carcinoma cells.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Zhou JR, Mukherjee P, Gugger ET, Tanaka T, Blackburn GL, Clinton SK (1998) Inhibition of murine bladder tumorigenesis by soy isoflavones via alterations in the cell cycle, apoptosis, and angiogenesis. Cancer Res 58:5231–5238

    PubMed  CAS  Google Scholar 

  2. 2.

    Shao ZM, Wu J, Shen ZZ, Barsky SH (1998) Genistein exerts multiple suppressive effects on human breast carcinoma cells. Cancer Res 58:4851–4857

    PubMed  CAS  Google Scholar 

  3. 3.

    Anton R (1988) Flavonoids and Traditional Medicine. Prog Clin Biol Res 280:423–439

    PubMed  CAS  Google Scholar 

  4. 4.

    Larocca LM, Teofili L, Leone G, Sica S, Pierelli L, Menichella G, Scambia G, Benedetti Panici P, Ricci R, Piantelli M, Ranelletti FO (1991) Antiproliferative activity of quercetin on normal bone marrow and leukaemic progenitors. Br J Haematol 79:562–566

    PubMed  CAS  Google Scholar 

  5. 5.

    Hosokawa N, Hosokawa Y, Sakai T, Yoshida M, Marui N, Nishino H, Kawai K, Aoike A (1990) Inhibitory effect of quercetin on the synthesis of a possibly cell-cycle-related 17-kDa protein in human colon cancer cells. Int J Cancer 45:1119–1124

    PubMed  CAS  Google Scholar 

  6. 6.

    Yoshida M, Sakai T, Hosokawa N, Marui N, Matsumoto K, Fujioka A, Nishino H, Aoike A (1990) The effect of quercetin on cell cycle progression and growth of human gastric cancer cells. FEBS Lett 260:10–13

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Yoshida M, Yamamoto M, Nikaido T (1992) Quercetin arrests human leukemic T-cells in late G1 phase of the cell cycle. Cancer Res 52:6676–6681

    PubMed  CAS  Google Scholar 

  8. 8.

    Avila MA, Velasco JA, Cansado J, Notario V (1994) Quercetin mediates the down-regulation of mutant p53 in the human breast cancer cell line MDA-MB468. Cancer Res 54:2424–2428

    PubMed  CAS  Google Scholar 

  9. 9.

    Choi JA, Kim JY, Lee JY, Kang CM, Kwon HJ, Yoo YD, Kim TW, Lee YS, Lee SJ (2001) Induction of cell cycle arrest and apoptosis in human breast cancer cells by quercetin. Int J Oncol 19:837–844

    PubMed  CAS  Google Scholar 

  10. 10.

    Kanadaswami C, Lee LT, Lee PP, Hwang JJ, Ke FC, Huang YT, Lee MT (2005) The antitumor activities of flavonoids. In Vivo 19:895–909

    PubMed  CAS  Google Scholar 

  11. 11.

    Baek SJ, Kim KS, Nixon JB, Wilson LC, Eling TE (2001) Cyclooxygenase inhibitors regulate the expression of a TGF-beta superfamily member that has proapoptotic and antitumorigenic activities. Mol Pharmacol 59:901–908

    PubMed  CAS  Google Scholar 

  12. 12.

    Bootcov MR, Bauskin AR, Valenzuela SM, Moore AG, Bansal M, He XY, Zhang HP, Donnellan M, Mahler S, Pryor K, Walsh BJ, Nicholson RC, Fairlie WD, Por SB, Robbins JM, Breit SN (1997) MIC-1, a novel macrophage inhibitory cytokine, is a divergent member of the TGF-beta superfamily. Proc Natl Acad Sci 94:11514–11519

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Lawton LN, Bonaldo MF, Jelenc PC, Qiu L, Baumes SA, Marcelino RA, de Jesus GM, Wellington S, Knowles JA, Warburton D, Brown S, Soares MB (1997) Identification of a novel member of the TGF-beta superfamily highly expressed in human placenta. Gene 203:17–26

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Paralkar VM, Vail AL, Grasser WA, Brown TA, Xu H, Vukicevic S, Ke HZ, Qi H, Owen TA, Thompson DD (1998) Cloning and characterization of a novel member of the transforming growth factor-beta/bone morphogenetic protein family. J Biol Chem 273:13760–13767

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Fairlie WD, Moore AG, Bauskin AR, Russell PK, Zhang HP, Breit SN (1999) MIC-1 is a novel TGF-beta superfamily cytokine associated with macrophage activation. J Leukoc Biol 65:2–5

    PubMed  CAS  Google Scholar 

  16. 16.

    Kim KS, Baek SJ, Flake GP, Loftin CD, Calvo BF, Eling TE (2002) Expression and regulation of nonsteroidal anti-inflammatory drug-activated gene (NAG-1) in human and mouse tissue. Gastroenterology 122:1388–1398

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Jang TJ, Kang HJ, Kim JR, Yang CH (2004) Non-steroidal anti-inflammatory drug activated gene (NAG-1) expression is closely related to death receptor-4 and -5 induction, which may explain sulindac sulfide induced gastric cancer cell apoptosis. Carcinogenesis 25:1853–1858

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Baek SJ, Wilson LC, Lee CH, Eling TE (2002) Dual function of nonsteroidal anti-inflammatory drugs (NSAIDs): inhibition of cyclooxygenase and induction of NSAID-activated gene. J Pharmacol Exp Ther 301:1126–1131

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Baek SJ, Wilson LC, Eling TE (2002) Resveratrol enhances the expression of non-steroidal anti-inflammatory drug-activated gene (NAG-1) by increasing the expression of p53. Carcinogenesis 23:425–434

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Wilson LC, Baek SJ, Call A, Eling TE (2003) Nonsteroidal anti-inflammatory drug-activated gene (NAG-1) is induced by genistein through the expression of p53 in colorectal cancer cells. Int J Cancer 105:747–753

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Baek SJ, Kim JS, Nixon JB, DiAugustine RP, Eling TE (2004) Expression of NAG-1, a transforming growth factor-beta superfamily member, by troglitazone requires the early growth response gene EGR-1. J Biol Chem 279:6883–6892

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Baek SJ, Kim JS, Jackson FR, Eling TE, McEntee MF, Lee SH (2004) Epicatechin gallate-induced expression of NAG-1 is associated with growth inhibition and apoptosis in colon cancer cells. Carcinogenesis 25:2425–2432

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Chatterjee S, Zaman K, Ryu H, Conforto A, Ratan RR (2001) Sequence-selective DNA binding drugs mithramycin A and chromomycin A3 are potent inhibitors of neuronal apoptosis induced by oxidative stress and DNA damage in cortical neurons. Ann Neurol 49:345–354

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Khachigian LM, Williams AJ, Collins T (1995) Interplay of Sp1 and Egr-1 in the proximal platelet-derived growth factor A-chain promoter in cultured vascular endothelial cells. J Biol Chem 270:27679–27686

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Davis W Jr, Chen ZJ, Ile KE, Tew KD (2003) Reciprocal regulation of expression of the human adenosine 5′-triphosphate binding cassette, sub-family A, transporter 2 (ABCA2) promoter by the early growth response-1 (EGR-1) and Sp-family transcription factors. Nucleic Acids Res 31:1097–1107

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Raychowdhury R, Schafer G, Fleming J, Rosewicz S, Wiedenmann B, Wang TC, Hocker M (2002) Interaction of early growth response protein 1 (Egr-1), specificity protein 1 (Sp1), and cyclic adenosine 3′5′-monophosphate response element binding protein (CREB) at a proximal response element is critical for gastrin-dependent activation of the chromogranin A promoter. Mol Endocrinol 16:2802–2818

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Hachiya M, Chumakov A, Miller CW, Akashi M, Said J, Koeffler HP (1994) Mutant p53 proteins behave in a dominant, negative fashion in vivo. Antocancer Res 14(5A):1853–1859

    CAS  Google Scholar 

  28. 28.

    Lee LT, Huang YT, Hwang JJ, Lee PP, Ke FC, Nair MP, Kanadaswam C, Lee MT (2002) Blockade of the epidermal growth factor receptor tyrosine kinase activity by quercetin and luteolin leads to growth inhibition and apoptosis of pancreatic tumor cells. Anticancer Res 22:1615–1627

    PubMed  CAS  Google Scholar 

  29. 29.

    Mouria M, Gukovskaya AS, Jung Y, Buechler P, Hines OJ, Reber HA, Pandol SJ (2002) Food-derived polyphenols inhibit pancreatic cancer growth through mitochondrial cytochrome C release and apoptosis. Int J Cancer 98:761–769

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Baek SJ, Kim JS, Moore SM, Lee SH, Martinez J, Eling TE (2005) Cyclooxygenase inhibitors induce the expression of the tumor suppressor gene EGR-1, which results in the up-regulation of NAG-1, an antitumorigenic protein. Mol Pharmacol 67:356–364

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Shim M, Eling TE (2005) Protein kinase C-dependent regulation of NAG-1/placental bone morphogenic protein/MIC-1 expression in LNCaP prostate carcinoma cells. J Biol Chem 280:18636–18642

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Tan M, Wang Y, Guan K, Sun Y (2000) PTGF-beta, a type beta transforming growth factor (TGF-beta) superfamily member, is a p53 target gene that inhibits tumor cell growth via TGF-beta signaling pathway. Proc Natl Acad Sci 97:109–114

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Lee SH, Kim JS, Yamaguchi K, Eling TE, Baek SJ (2005) Indole-3-carbinol and 3,3′-diindolylmethane induce expression of NAG-1 in a p53-independent manner. Biochem Biophys Res Commun 328:63–69

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Raychowdhury R, Schafer G, Fleming J, Rosewicz S, Wiedenmann B, Wang TC, Hocker M (2002) Interaction of early growth response protein 1 (Egr-1), specificity protein 1 (Sp1), and cyclic adenosine 3′5′-monophosphate response element binding protein (CREB) at a proximal response element is critical for gastrin-dependent activation of the chromogranin A promoter. Mol Endocrinol 16:2802–2818

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Davis W Jr, Chen ZJ, Ile KE, Tew KD (2003) Reciprocal regulation of expression of the human adenosine 5′-triphosphate binding cassette, sub-family A, transporter 2 (ABCA2) promoter by the early growth response-1 (EGR-1) and Sp-family transcription factors. Nucleic Acids Res 31:1097–1107

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Albertoni M, Shaw PH, Nozaki M, Godard S, Tenan M, Hamou MF, Fairlie DW, Breit SN, Paralkar VM, de Tribolet N, Van Meir EG, Hegi ME (2002) Anoxia induces macrophage inhibitory cytokine-1 (MIC-1) in glioblastoma cells independently of p53 and HIF-1. Oncogene 21:4212–4219

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Li PX, Wong J, Ayed A, Ngo D, Brade AM, Arrowsmith C, Austin RC, Klamut HJ (2000) Placental transforming growth factor-beta is a downstream mediator of the growth arrest and apoptotic response of tumor cells to DNA damage and p53 overexpression. J Biol Chem 275:20127–20135

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. K. Kwon.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lim, J.H., Park, JW., Min, D.S. et al. NAG-1 up-regulation mediated by EGR-1 and p53 is critical for quercetin-induced apoptosis in HCT116 colon carcinoma cells. Apoptosis 12, 411–421 (2007). https://doi.org/10.1007/s10495-006-0576-9

Download citation

Keywords

  • Quercetin
  • NAG-1
  • Apoptosis
  • Sp1
  • EGR-1
  • p53
  • Colon carcinoma cells