Skip to main content
Log in

Testicular germ cell sensitivity to TRAIL-induced apoptosis is dependent upon p53 expression and is synergistically enhanced by DR5 agonistic antibody treatment

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The ability of the TRAIL/DR5 signaling pathway to induce apoptosis has generally been limited to tumor cells. Here we report that in primary testis explants, addition of TRAIL (0.5 μg/ml) caused a three-fold increase in germ cell apoptosis. Furthermore, exposure of C57BL/6 mice to the testicular toxicant, mono-(2-ethylhexyl) phthalate (MEHP), caused an increased p53 stability and elevated DR5 mRNA levels coincident with increases in the levels of apoptosis in spermatocytes. To further assess the mechanisms responsible for the sensitivity of germ cells to undergo TRAIL/DR5-mediated apoptosis, we used the germ cell lines GC-1spg and GC-2spd(ts) (a temperature sensitive spermatocyte-like cell line that allows for p53 nuclear localization at 32°C but not 37°C). Addition of TRAIL and the anti-DR5 monoclonal antibody, MD5-1, triggered a robust synergistic increase of apoptosis in p53 permissive GC-2 cells (32°C) but not in GC-1 cells. In addition, DR5 levels on the plasma membrane of permissive cells were considerably enhanced concomitant with p53 expression and after MD5-1 treatment. These data represent the first indication that testicular germ cells, specifically spermatocytes, can undergo TRAIL-mediated apoptosis and the clinically relevant observation that pretreatment with a DR5 monoclonal antibody can greatly sensitize their apoptotic response to TRAIL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kimberley FC and Screaton GR (2004) Following a TRAIL update on a ligand and its five receptors. Cell Res 14:359–72

    Article  CAS  PubMed  Google Scholar 

  2. Wajant H, Gerspach J, Pfizenmaier K (2005) Tumor therapeutics by design: targeting and activation of death receptors. Cytokine Growth Factor Rev 16:55–6

    Article  CAS  PubMed  Google Scholar 

  3. Fulda S, Debatin KM (2004) Modulation of TRAIL signaling for cancer therapy. Vitam Horm. 67:275–90

    Article  CAS  PubMed  Google Scholar 

  4. Kelley SK, Ashkenazi A (2004) Targeting death receptors in cancer with Apo2L/TRAIL. Curr Opin Pharmacol 4:333–39

    Article  CAS  PubMed  Google Scholar 

  5. Mori E, Thomas M, Motoki K, Nakazawa K, Tahara T, Tomizuka K, Ishida I and S Kataoka. Human normal hepatocytes are susceptible to apoptosis signal mediated by both TRAIL-R1 and TRAIL-R2. Cell Death Differ 11:203–07

  6. Jin Z, El-Deiry WS (2005) Overview of cell death signaling pathways. Cancer Biol Ther 4:139–3

    Article  CAS  PubMed  Google Scholar 

  7. Peter ME (2000) The TRAIL DISCussion: It is FADD and caspase-8!. Cell Death Differ 7:759–60

    Article  CAS  PubMed  Google Scholar 

  8. Wang S, El-Deiry WS (2003) TRAIL and apoptosis induction by TNF-family death receptors. Oncogene 22:8628–633

    Article  CAS  PubMed  Google Scholar 

  9. Mitsiades N, Mitsiades CS, Poulaki V, Anderson KC, Treon SP (2002) Intracellular regulation of tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in human multiple myeloma cells. Blood 99:2162–171

    Article  CAS  PubMed  Google Scholar 

  10. Wajant H, Haas E, Schwenzer R, Muhlenbeck F, Kreuz S, Schubert G, Grell M, Smith C, Scheurich P (2000) Inhibition of death receptor-mediated gene induction by a cycloheximide-sensitive factor occurs at the level of or upstream of Fas-associated death domain protein (FADD). J Biol Chem 275:24357–4366

    Article  CAS  PubMed  Google Scholar 

  11. Kreuz S, Siegmund D, Scheurich P, Wajant H (2001) NF-kappaB inducers upregulate cFLIP, a cycloheximide-sensitive inhibitor of death receptor signaling Mol Cell Biol 21:3964–973

    Article  CAS  PubMed  Google Scholar 

  12. Leverkus M, Neumann M, Mengling T, Rauch CT, Brocker EB, Krammer PH, Walczak H (2000) Regulation of tumor necrosis factor-related apoptosis-inducing ligand sensitivity in primary and transformed human keratinocytes. Cancer Res 60:553–59

    CAS  PubMed  Google Scholar 

  13. Ichikawa K, Liu W, Zhao L, Wang Z, Liu D, Ohtsuka T, Zhang H, Mountz JD, Koopman WJ, Kimberly RP, Zhou T (2001) Tumoricidal activity of a novel anti-human DR5 monoclonal antibody without hepatocyte cytotoxicity. Nat Med 7:954–60

    Article  CAS  PubMed  Google Scholar 

  14. Guo Y, Chen C, Zheng Y, Zhang J, Tao X, Liu S, Zheng D, Liu Y (2005) A novel anti-human DR5 monoclonal antibody with tumoricidal activity induces caspase-dependent and caspase-independent cell death. J Biol Chem 280:41940–952

    Article  CAS  PubMed  Google Scholar 

  15. Richburg JH, Boekelheide K (1996) Mono-(2-ethylhexyl) phthalate rapidly alters both Sertoli cell vimentin filaments and germ cell apoptosis in young rat testes. Toxicol Appl Pharmacol 137:42–0

    Article  CAS  PubMed  Google Scholar 

  16. Giammona CJ, Sawhney P, Chandrasekaran Y, Richburg JH (2002) Death receptor response in rodent testis after mono-(2-ethylhexyl) phthalate exposure. Toxicol Appl Pharmacol 185:119–27

    Article  CAS  PubMed  Google Scholar 

  17. Boekelheide K, Fleming SL, Johnson KJ, Patel SR, Schoenfeld HA (2000) Role of Sertoli cells in injury-associated testicular germ cell apoptosis. Proc Soc Exp Biol Med 225:105–15

    Article  CAS  PubMed  Google Scholar 

  18. Chandrasekaran Y, Richburg JH (2005) The p53 Protein Influences the Sensitivity of Testicular Germ Cells to Mono-(2-Ethylhexyl) Phthalate-Induced Apoptosis by Increasing the Membrane Levels of Fas and DR5 and Decreasing the Intracellular Amount of c-FLIP. Biol Reprod 72:206–13

    Article  CAS  PubMed  Google Scholar 

  19. Grataroli R, Vindrieux D, Gougeon A, Benahmed M (2002) Expression of Tumor Necrosis Factor-alpha-Related Apoptosis-Inducing Ligand and Its Receptors in Rat Testis During Development. Biol Reprod 66:1707–715

    Article  CAS  PubMed  Google Scholar 

  20. Richburg JH, Nanez A, Williams LR, Embree ME, Boekelheide K (2000) Sensitivity of testicular germ cells to toxicant-induced apoptosis in gld mice that express a nonfunctional form of Fas ligand. Endocrinology 141:787–93

    Article  CAS  PubMed  Google Scholar 

  21. Chandrasekaran Y, McKee CM, Ye Y, Richburg JH (2006) Influence of TRP53 status on FAS membrane localization, CFLAR (c-FLIP) ubiquitinylation, and sensitivity of GC-2spd (ts) cells to undergo FAS-mediated apoptosis. Biol Reprod 74:560–68

    Article  CAS  PubMed  Google Scholar 

  22. Cretney E, Takeda K, Yagita H, Glaccum M, Peschon JJ, MJ Smyth (2002) Increased Susceptibility to Tumor Initiation and Metastasis in TNF-Related Apoptosis-Inducing Ligand-Deficient Mice. J Immunol 168:1356–361

    CAS  PubMed  Google Scholar 

  23. Finnberg N, Gruber JJ, Fei P, Rudolph D, Bric A, Kim S, Burns TF, Ajuha H, Page R, Wu G, Chen Y, McKenna WG, Bernhard E, Lowe S, Mak T, El-Deiry WS (2005) DR5 Knockout Mice Are Compromised in Radiation-Induced Apoptosis. Mol Cell Bio 5:2000–013

    Article  CAS  Google Scholar 

  24. Kotaja N, Kimmins S, Brancorsini S, Hentsch D, Vonesch JL, Davidson I, Parvinen M, Sassone-Corsi P (2004) Preparation, isolation and characterization of stage-specific spermatogenic cells for cellular and molecular analysis. Nat Methods 3:249–54

    Article  Google Scholar 

  25. Grataroli R, Vindrieux D, Selva J, Felsenheld C, Ruffion A, Decaussin M, Benahmed M (2004) Characterization of tumour necrosis factor-alpha-related apoptosis-inducing ligand and its receptors in the adult human testis. Mol Hum Reprod 10:123–28

    Article  CAS  PubMed  Google Scholar 

  26. Kangasniemi M, Kaipia A, Mali P, Toppari J, Huhtaniemi I, Parvinen M (1990) Modulation of basal and FSH-dependent cyclic AMP production in rat seminiferous tubules staged by an improved transillumination technique. The Anatomical Record 227:62–6

    Article  CAS  PubMed  Google Scholar 

  27. Hofmann MC, Narisawa S, Hess RA, Millan JL (1992) Immortalization of germ cells and somatic testicular cells using the SV40 large T antigen. Exp Cell Res 201:417–5

    Article  CAS  PubMed  Google Scholar 

  28. Hofmann M-C, Hess rA, Goldberg E, Millán JL (1994) Immortalized germ cells undergo meiosis in vitro. Proc Natl Acad Sci USA 91:5533–537

    Article  CAS  PubMed  Google Scholar 

  29. Van Engeland M, Nieland LJ, Ramaekers FC, Schutte B, Reutelingsperger CP (1998) Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry 31:1–

    Article  CAS  PubMed  Google Scholar 

  30. Jin Z, McDonald ER, 3rd, Dicker DT, El-Deiry WS (2004) Deficient tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor transport to the cell surface in human colon cancer cells selected for resistance to TRAIL-induced apoptosis. J Biol Chem 279:35829–5839

    Article  CAS  PubMed  Google Scholar 

  31. Toppari J, Parvinen M (1985) In vitro differentiation of rat seminiferous tubular segments from defined stages of the epithelial cycle morphologic and immunolocalization analysis. J Androl 6:334–43

    CAS  PubMed  Google Scholar 

  32. Bhattacharya N, Dufour JM, Vo MN, Okita J, Okita R, Kim KH (2005) Differential effects of phthalates on the testis and the liver. Biol Reprod 72:745–54

    Article  CAS  PubMed  Google Scholar 

  33. Takeda K, Yamaguchi N, Akiba H, Kojima Y, Hayakawa Y, Tanner JE, Sayers TJ, Seki N, Okumura K, Yagita H, Smyth MJ (2004) Induction of tumor-specific T cell immunity by anti-DR5 antibody therapy. J Exp Med 199:437–48

    Article  CAS  PubMed  Google Scholar 

  34. Bhojani MS, Rossu BD, Rehemtulla A (2003) TRAIL and anti-tumor responses. Cancer Biol Ther 2(4 Suppl 1):71–8

    Google Scholar 

  35. Ashkenazi A, Pai RC, Fong S, Leung S, Lawrence DA, Marsters SA, Blackie C, Chang L, McMurtrey AE, Hebert A, DeForge L, Koumenis IL, Lewis D, Harris L, Bussiere J, Koeppen H, Shahrokh Z, Schwall RH (1999) Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest 104:155–62

    Article  CAS  PubMed  Google Scholar 

  36. Lee J, Richburg JH, Shipp EB, Meistrich ML, Boekelheide K (1999) The Fas system, a regulator of testicular germ cell apoptosis, is differentially up-regulated in Sertoli cell versus germ cell injury of the testis. Endocrinology 140:852–85

    Article  CAS  PubMed  Google Scholar 

  37. Schwartz D, Goldfinger N, Rotter V (1993) Expression of p53 protein in spermatogenesis is confined to the tetraploid pachytene primary spermatocytes. Oncogene 8:1487–4

    CAS  PubMed  Google Scholar 

  38. Yin Y, DeWolf WC, Morgentaler A (1997) p53 is associated with the nuclear envelope in mouse testis. Biochem Biophys Res Commun 235:689–94

    Article  CAS  PubMed  Google Scholar 

  39. Brooks CL, Gu W (2006) p53 ubiquitination: Mdm2 and beyond. Mol Cell 21:307–5

    Article  CAS  PubMed  Google Scholar 

  40. Li M, Chen D, Shiloh A, Luo J, Nikolaev AY, Qin J, Gu W (2002) Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization. Nature 416:648–53

    Article  CAS  PubMed  Google Scholar 

  41. Wang YL, Liu W, Sun YJ, Kwon J, Setsuie R, Osaka H, Noda M, Aoki S, Yoshikawa Y, Wada K (2006) Overexpression of ubiquitin carboxyl-terminal hydrolase L1 arrests spermatogenesis in transgenic mice. Mol Reprod Dev 73:40–9

    Article  CAS  PubMed  Google Scholar 

  42. Kwon J, Mochida K, Wang YL, Sekiguchi S, Sankai T, Aoki S, Ogura A, Yoshikawa Y, Wada K (2005) Ubiquitin C-terminal hydrolase L-1 is essential for the early apoptotic wave of germinal cells and for sperm quality control during spermatogenesis. Biol Reprod 73:29–5

    Article  CAS  PubMed  Google Scholar 

  43. Shen H, Sikorska M, Leblanc J, Walker PR, Liu QY (2006) Oxidative stress regulated expression of Ubiquitin Carboxyl-terminal Hydrolase-L1: Role in cell survival. Apoptosis. (In Press)

  44. Print CG, Loveland KL (2000) Germ cell suicide: new insights into apoptosis during spermatogenesis. Bioessays 22:423–30

    Article  CAS  PubMed  Google Scholar 

  45. Richburg JR (2006) The role of death receptor signaling in testicular germ-cell apoptosis by mono-(2-ethylhexyl) phthalate(MEHP)-induced Sertoli cell injury and its implications for risk assessment. J Tox Environ Health 69:793–09

    Article  CAS  Google Scholar 

  46. Wolkowicz MJ, Coonrod SA, Reddi PP, Millan JL, Hofmann MC, Herr JC (1996) Refinement of the differentiated phenotype of the spermatogenic cell line GC-2spd(ts). Biol Reprod 55:923–32

    Article  CAS  PubMed  Google Scholar 

  47. Ohtsuka T, Buchsbaum D, Oliver P, Makhija S, Kimberly R, Zhou T (2003) Synergistic induction of tumor cell apoptosis by death receptor antibody and chemotherapy agent through JNK/p38 and mitochondrial death pathway. Oncogene 22:2034–044

    Article  CAS  PubMed  Google Scholar 

  48. Buchsbaum DJ, Zhou T, Grizzle WE, Oliver PG, Hammond CJ, Zhang S, Carpenter M, LoBuglio AF (2003) Antitumor efficacy of TRA-8 anti-DR5 monoclonal antibody alone or in combination with chemotherapy and/or radiation therapy in a human breast cancer model. Clin Cancer Res 9:3731–741

    CAS  PubMed  Google Scholar 

  49. Ichikawa K, Liu W, Fleck M, Zhang H, Zhao L, Ohtsuka T, Wang Z, Liu D, Mountz JD, Ohtsuki M, Koopman WJ, Kimberly R, Zhou T (2003) TRAIL-R2 (DR5) mediates apoptosis of synovial fibroblasts in rheumatoid arthritis. J Immunol 171:1061–069

    CAS  PubMed  Google Scholar 

  50. Peter ME, Scaffidi C, Medema JP, et al. (1999-1998) The death receptors. Results Probl Cell Differ 23:25–3 Febs Lett 424:41–5

    Google Scholar 

  51. Kischkel FC, Hellbardt S, Behrmann I, Germer M, Pawlita M, Krammer PH, Peter ME (1995) Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J 14:5579–588

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John H. Richburg.

Additional information

This work was supported, in part, by grants from the National Institute of Environmental Health Sciences/NIH (ES09145, JHR), Toxicology Training grant (ES T32 ES007247, CM), NIH Center Grant (P30 ES07784, JHR) and the Center for Molecular and Cellular Toxicology (CMCT).

Rights and permissions

Reprints and permissions

About this article

Cite this article

McKee, C.M., Ye, Y. & Richburg, J.H. Testicular germ cell sensitivity to TRAIL-induced apoptosis is dependent upon p53 expression and is synergistically enhanced by DR5 agonistic antibody treatment. Apoptosis 11, 2237–2250 (2006). https://doi.org/10.1007/s10495-006-0288-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-006-0288-1

Keywords

Navigation