Skip to main content

Advertisement

Log in

Diverse pathways mediate chemotherapy-induced cell death in acute lymphoblastic leukemia cell lines

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Cancer cell resistance to chemotherapy may be mediated by defects in apoptotic pathways. A prior study showed that in vivo apoptosis of Acute Lymphoblastic Leukemia (ALL) blasts in response to chemotherapy could occur through diverse pathways including both p53-dependent and -independent mechanisms. In this study we investigated the apoptotic response in more detail by using a panel of ALL cell lines that differed in respect to p53 status. Upon exposure to a uniform stimulus, expression of apoptotic proteins, including the effector caspase-3, varied among ALL cell lines partly depending on p53 transcriptional activity and caspase-8 activation. Although the expression and contribution to apoptosis differed among known members of the apoptotic pathway, apoptosis was universally mediated by mitochondrial depolarization. The NFκB pathway was activated in response to chemotherapy but NFκB inhibition appeared to not influence chemosensitivity. This study further documents the highly variable nature of cell death programs in ALL and provides the foundation for cell death pathway modulation to improve ALL cure rates without increasing chemotherapy-related toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pui CH, Evans WE (2006) Treatment of acute lymphoblastic leukemia. N Engl J Med 354:166–178

    Article  PubMed  CAS  Google Scholar 

  2. Ferri KF, Kroemer G (2001) Organelle-specific initiation of cell death pathways. Nature Cell Biol 3:E255–E263

    Article  PubMed  CAS  Google Scholar 

  3. Kim R, Tanabe K, Uchida Y, Emi M, Inoue H, Toge T (2002) Current status of the molecular mechanisms of anticancer drug-induced apoptosis. Cancer Chemother Pharmacol 50:343–352

    Article  PubMed  CAS  Google Scholar 

  4. Schimmer AD, Hedley DW, Penn LZ, Minden MD (2001) Receptor- and mitochondrial-mediated apoptosis in acute leukemia: a translational view. Blood 98:3541–3553

    Article  PubMed  CAS  Google Scholar 

  5. Liu T, Raetz E, Moos PJ et al (2002) Diversity of the apoptotic response to chemotherapy in childhood leukemia. Leukemia 16:223–232

    Article  PubMed  CAS  Google Scholar 

  6. Jonveaux P, Berger R (1991) Infrequent mutations in the p53 gene in primary human T-cell acute lymphoblastic leukemia. Leukemia 5:839–840

    PubMed  CAS  Google Scholar 

  7. Fenaux P, Jonveaux P, Quiquandon I et al (1992) Mutations of the p53 gene in B-cell acute lymphoblastic leukemia: A report on 60 cases. Leukemia 6:42–46

    PubMed  CAS  Google Scholar 

  8. Turco MC, Romano MF, Petrella A, Bisogni R, Tassone P, Venuta S (2004) NF-κB/Rel-mediated regulation of apoptosis in hematologic malignancies and normal hematopoietic progenitors. Leukemia 18:11–17

    Article  PubMed  CAS  Google Scholar 

  9. Shehata MF (2005) Rel/Nuclear factor-kappa B apoptosis pathways in human cervical cancer cells. Cancer Cell Int 5:10–22

    Article  PubMed  Google Scholar 

  10. Karin M, Yamamoto Y, Wang QM (2004) The IKK NF-κB system: A treasure trove for drug development. Nat Rev Drug Discov 3:17–26

    Article  PubMed  CAS  Google Scholar 

  11. Amiri KI, Horton LW, LaFleur BJ, Sosman JA, Richmond A (2004) Augmenting chemosensitivity of malignant melanoma tumors via proteasome inhibition: implication for Bortezomib (VELCADE, PS-341) as a therapeutic agent for malignant melanoma. Cancer Res 64:4912–4918

    Article  PubMed  CAS  Google Scholar 

  12. Zhou M, Gu L, Li F, Zhu Y, Woods WG, Findley HW (2002) DNA damage induces a novel p53-Survivin signaling pathway regulating cell cycle and apoptosis in acute lymphoblastic leukemia cells. J Pharmacol Exp Ther 303:124–131

    Article  PubMed  CAS  Google Scholar 

  13. Zhou M, Yeager AM, Smith SD, Findley HW (1995) Overexpression of the MDM2 gene by childhood acute lymphoblastic leukemia cells expressing the wild-type p53 gene. Blood 85:1608–1614

    PubMed  CAS  Google Scholar 

  14. Mitsiades N, Mitsiades CS, Poulaki V et al (2002) Biologic sequelae of nuclear factor-κB blockade in multiple myeloma: therapeutic applications. Blood 99:4079–4086

    Article  PubMed  CAS  Google Scholar 

  15. Bargonetti J, Manfredi JJ (2002) Multiple roles of the tumor suppressor p53. Curr Opin Oncol 14:86–91

    Article  PubMed  CAS  Google Scholar 

  16. Marchenko ND, Zaika A, Moll UM (2000) Death signal-induced localization of p53 protein to mitochondria. J Biol Chem 275:16202–16212

    Article  PubMed  CAS  Google Scholar 

  17. Herr I, Wilhelm D, Bohler T, Angel P, Debatin KM (1997) Activation of CD95 (APO-1/Fas) signaling by ceramide mediates cancer therapy-induced apoptosis. EMBO J 16:6200–6208

    Article  PubMed  CAS  Google Scholar 

  18. Fulda S, Susin SA, Kroemer G, Debatin KM (1998) Molecular ordering of apoptosis induced by anticancer drugs in neuroblastoma cells. Cancer Res 58:4453–4460

    PubMed  CAS  Google Scholar 

  19. Engels IH, Stepczynska A, Stroh C et al (2000) Caspase-8/FLICE function as an executioner caspase in anticancer drug-induced apoptosis. Oncogene 19:4563–4573

    Article  PubMed  CAS  Google Scholar 

  20. Chandra D, Choy G, Deng X, Bhatia B, Daniel P, Tang DG (2004) Association of active caspase 8 with the mitochondrial membrane during apoptosis: potential roles in cleaving BAP31 and caspase 3 and mediating mitochondrion-endoplasmic reticulum cross talk in etoposide-induced cell death. Mol Cell Biol 24:6592–6607

    Article  PubMed  CAS  Google Scholar 

  21. Marks DI, Kurz BW, Link MP et al (1996) High incidence of potential p53 inactivation in poor outcome childhood acute lymphoblastic leukemia at diagnosis. Blood 87:1155–1161

    PubMed  CAS  Google Scholar 

  22. Chen F, Castranova V, Shi X (2001) New insights into the role of nuclear factor-κB in cell growth regulation. Am J Perinatol 159:387–397

    CAS  Google Scholar 

  23. Haarman EG, Kaspers GJ, Pieters R et al (1999) BCL-2 expression in childhood leukemia versus spontaneous apoptosis, drug induced apoptosis, and in vitro drug resistance. Adv Exp Med Biol 457:325–333

    PubMed  CAS  Google Scholar 

  24. Blade J, Cibeira MT, Rosinol L (2005) Bortezomib: a valuable new antineoplastic strategy in multiple myeloma. Acta Oncol 44:440–448

    Article  PubMed  CAS  Google Scholar 

  25. Kasuga C, Ebata T, Kayagaki N et al (2004) Sensitization of human glioblastomas to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) by NF-κB inhibitors. Cancer Sci 95:840–844

    Article  PubMed  CAS  Google Scholar 

  26. Starenki D, Namba H, Saenko V, Ohtsuru A, Yamashita S (2004) Inhibition of nuclear factor-κB cascade potentiates the effect of a combination treatment of anaplastic thyroid cancer cells. J Clin Endocrinol Metab 89:410–418

    Article  PubMed  CAS  Google Scholar 

  27. Meli M, D’alessandro N, Tolomeo M, Rausa L, Notarbartolo M, Dusonchet L (2003) NF-κB inhibition restores sensitivity to Fas-mediated apoptosis in lymphoma cell lines. Ann NY Acad Sci 1010:232–236

    Article  PubMed  CAS  Google Scholar 

  28. Schrappe M, Reiter A, Zimmermann M et al (2000) Long-term results of four consecutive trials in childhood ALL performed by the ALL-BFM study group from 1981 to 1995. Leukemia 14:2205–2222

    Article  PubMed  CAS  Google Scholar 

  29. Karpinich NO, Tafani M, Rothman RJ, Russo MA, Farber JL (2002) The course of etoposide-induced apoptosis from damage to DNA and p53 activation to mitochondrial release of cytochrome c. J Biol Chem 277:16547–16552

    Article  PubMed  CAS  Google Scholar 

  30. Greenstein S, Krett NL, Kurosawa Y et al (2003) Characterization of the MM.1 human multiple myeloma (MM) cell lines: a model system to elucidate the characteristics, behavior, and signaling of steroid-sensitive and -resistant MM cells. Exp Hematol 31:271–282

    Article  PubMed  CAS  Google Scholar 

  31. Sansome C, Zaika A, Marchenko ND, Moll UM (2001) Hypoxia death stimulus induces translocation of p53 protein to mitochondria. FEBS Lett 488:110–115

    Article  PubMed  CAS  Google Scholar 

  32. Mihara M, Erster S, Zaika A et al (2003) p53 has a direct apoptogenic role at the mitochondria. Mol Cell 11:577–590

    Article  PubMed  CAS  Google Scholar 

  33. Chipuk JE, Kuwana T, Bouchier-Hayes L et al (2004) Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303:1010–1014

    Article  PubMed  CAS  Google Scholar 

  34. Johnstone RW, Ruefli AA, Lowe SW (2002) Apoptosis: a link between cancer genetics and chemotherapy. Cell 108:153–164

    Article  PubMed  CAS  Google Scholar 

  35. An WG, Hwang SG, Trepel JB, Blagosklonny MV (2000) Protease inhibitor-induced apoptosis: accumulation of wt p53, p21WAF1/CIP1, and induction of apoptosis are independent markers of proteasome inhibition. Leukemia 14:1276–1283

    Article  PubMed  CAS  Google Scholar 

  36. Richardon P (2003) Clinical update: proteasome inhibitors in hematologic malignancies. Cancer Treat Rev 29 (Suppl 1):33–39

    Article  Google Scholar 

  37. Wesselborg S, Engels IH, Rossmann E, Los M, Schulze-Osthoff K (1999) Anticancer drugs induce caspase-8/FLICE activation and apoptosis in the absence of CD95 receptor/ligand interaction. Blood 93:3053–3063

    PubMed  CAS  Google Scholar 

  38. Lin CF, Chen CL, Chang WT et al (2004) Sequential caspase-2 and caspase-8 activation upstream of mitochondria during ceramide- and etoposide-induced apoptosis. J Biol Chem 279:40755–40761

    Article  PubMed  CAS  Google Scholar 

  39. Schwartz SA, Hernandez A, Evers BM (1999) The role of NF-κB/IκB proteins in cancer: implications for novel treatment strategies. Surg Oncol 8:143–153

    Article  PubMed  CAS  Google Scholar 

  40. Richmond A (2002) NF-κB, chemokine gene transcription and tumour growth. Nat Rev Immunol 2:664–674

    Article  PubMed  CAS  Google Scholar 

  41. Bauer JA, Trask DK, Kumar B et al (2005) Reversal of cisplatin resistance with a BH3 mimetic, (–)-gossypol, in head and neck cancer cells: role of wild-type p53 and Bcl-xL. Mol Cancer Ther 4:1096–1104

    Article  PubMed  CAS  Google Scholar 

  42. Cohen GM (1997) Caspases: the executioners of apoptosis. Biochem J 326:1–16

    PubMed  CAS  Google Scholar 

  43. Susin SA, Lorenzo HK, Zamzami N et al (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441–446

    Article  PubMed  CAS  Google Scholar 

  44. Vahsen N, Candé C, Brièreet JJ et al (2004) AIF deficiency compromises oxidative phosphorylation. EMBO J 23:4679–4689

    Article  PubMed  CAS  Google Scholar 

  45. Chen L, Willis SN, Wei A et al (2005) Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell 17:393–403

    Article  PubMed  CAS  Google Scholar 

  46. Melino GF, Bernassola M, Ranalli K et al (2004) p73 induces apoptosis via PUMA transactivation and Bax mitochondrial translocation. J Biol Chem 279:8076–8083

    Article  PubMed  CAS  Google Scholar 

  47. Casale F, Addeo R, D’Angelo V et al (2003) Determination of the in vivo effects of prednisone on Bcl-2 family protein expression in childhood acute lymphoblastic leukemia. Int J Oncol 22:123–128

    PubMed  CAS  Google Scholar 

  48. Jaattela M, Tschopp J (2003) Caspase-independent cell death in T lymphocytes. Nature Immunol 4:416–423

    Article  Google Scholar 

  49. Ishitsuka K, Hideshima T, Hamasaki M et al (2005) Honokiol overcomes conventional drug resistance in human multiple myeloma by induction of caspase-dependent and –independent apoptosis. Blood 106:1794–1800

    Article  PubMed  CAS  Google Scholar 

  50. Carter BZ, Kornblau SM, Tsao T et al (2003) Caspase-independent cell death in AML: caspase inhibition in vitro with pan-caspase inhibitors or in vivo by XIAP or Survivin does not affect cell survival or prognosis. Blood 102:4179–4186

    Article  PubMed  CAS  Google Scholar 

  51. Stanglmaier M, Reis S, Hallek M (2004) Rituximab and alemtuzumab induce a nonclassic, caspase-independent apoptotic pathway in B-lymphoid cell lines and in chronic lymphocytic leukemia cells. Ann Hematol 83:634–645

    Article  PubMed  CAS  Google Scholar 

  52. Martins LM, Iaccarino I, Tenev T et al (2002) The serine protease Omi/HtrA2 regulates apoptosis by binding XIAP through a reaper-like motif. J Biol Chem 277:439–444

    Article  PubMed  CAS  Google Scholar 

  53. Gross A, McDonnell JM, Korsmeyer SJ (1999) Bcl-2 family members and the mitochondria in apoptosis. Genes Dev 13:1899–1911

    PubMed  CAS  Google Scholar 

  54. Ruvolo PP, Deng X, May WS (2001) Phosphorylation of Bcl2 and regulation of apoptosis. Leukemia 15:515–522

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William L. Carroll.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Min, DJ., Moskowitz, N.P., Brownstein, C. et al. Diverse pathways mediate chemotherapy-induced cell death in acute lymphoblastic leukemia cell lines. Apoptosis 11, 1977–1986 (2006). https://doi.org/10.1007/s10495-006-0081-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-006-0081-1

Keywords

Navigation