, Volume 12, Issue 4, pp 671–684 | Cite as

Garlic compounds induced calpain and intrinsic caspase cascade for apoptosis in human malignant neuroblastoma SH-SY5Y cells

  • Surajit Karmakar
  • Naren L. Banik
  • Sunil J. Patel
  • Swapan K. RayEmail author


Malignant (N-type) neuroblastoma continues to defy current chemotherapeutic regimens. We tested the garlic compounds diallyl sulfide (DAS) and diallyl disulfide (DADS) for induction of apoptosis in human malignant neuroblastoma SH-SY5Y cells. Viability of human primary neurons was unaffected after 24 h treatment with 50 and 100 μM DAS and 50 μM DADS but slightly affected with 100 μM DADS. Treatment with 50 and 100 μM DAS or DADS significantly decreased viability in SH-SY5Y cells. Wright staining showed morphological features of apoptosis in SH-SY5Y cells treated with 50 and 100 μM DAS or DADS for 24 h. ApopTag assay demonstrated DNA fragmentation in apoptotic cells. Apoptosis was associated with an increase in [Ca2+]i, increase in Bax:Bcl-2 ratio, mitochondrial release of cytochrome c, increase in cytosolic Smac/Diablo, and down regulation of inhibitor-of-apoptosis proteins and nuclear factor kappa B (NFκB). Activation of caspase-9 and caspase-3 indicated involvement of intrinsic pathway of apoptosis. Calpain and caspase-3 activities produced 145 kD spectrin break down product (SBDP) and 120 kD SBDP, respectively. Also, caspase-3 activity cleaved inhibitor of caspase-activated DNase (ICAD). Results strongly suggested that the garlic compounds DAS and DADS suppressed anti-apoptotic factors and activated calpain and intrinsic caspase cascade for apoptosis in SH-SY5Y cells.


Apoptosis Calpain Caspases Garlic compounds Neuroblastoma 



Baculovirus inhibitor-of-apoptosis repeat containing-2


Baculovirus inhibitor-of-apoptosis repeat containing-3


Intracellular free calcium concentration


Caspase-activated DNase


Cellular inhibitor-of-apoptosis protein 1


Cellular inhibitor-of-apoptosis protein 2


Diallyl disulfide


Diallyl sulfide


Inhibitor-of-apoptosis proteins


Inhibitor of caspase-activated DNase


Inhibitor of nuclear factor kappa B alpha


Nuclear factor kappa B


Spectrin breakdown product


Second mitochondrial activator of caspases/direct IAP binding protein with low pI



This investigation was supported in part by the R01 grants (CA-91460 and NS-57811) from the National Institutes of Health (Bethesda, MD, USA) and also by the Spinal Cord Injury Research Fund (SCIRF-0803) from the State of South Carolina.


  1. 1.
    Brodeur GM (2003) Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer 3(3):203–216PubMedCrossRefGoogle Scholar
  2. 2.
    Irshad S, Pedley RB, Anderson J, Latchman DS, Budhram-Mahadeo V (2004) The Brn-3b transcription factor regulates the growth, behavior, and invasiveness of human neuroblastoma cells in vitro and in vivo. J Biol Chem 279(20):21617–21627PubMedCrossRefGoogle Scholar
  3. 3.
    Maris JM, Matthay KK (1999) Molecular biology of neuroblastoma. J Clin Oncol 17(7):2264–2279PubMedGoogle Scholar
  4. 4.
    Kabore AF, Johnston JB, Gibson SB (2004) Changes in the apoptotic and survival signaling in cancer cells and their potential therapeutic implications. Curr Cancer Drug Targ 4(2):147–163CrossRefGoogle Scholar
  5. 5.
    Kim R (2005) Recent advances in understanding the cell death pathways activated by anticancer therapy. Cancer 103(8):1551–1560PubMedCrossRefGoogle Scholar
  6. 6.
    Orrenius S (2004) Mitochondrial regulation of apoptotic cell death. Toxicol Lett 149(1–3):19–23PubMedCrossRefGoogle Scholar
  7. 7.
    Kroemer G, Reed JC (2000) Mitochondrial control of cell death. Nat Med 6(5):513–519PubMedCrossRefGoogle Scholar
  8. 8.
    Goyal L (2001) Cell death inhibition: keeping caspases in check. Cell 104(6):805–808PubMedCrossRefGoogle Scholar
  9. 9.
    Moore JD, Rothwell NJ, Gibson RM (2002) Involvement of caspases and calpains in cerebrocortical neuronal cell death is stimulus-dependent. Br J Pharmacol 135(4):1069–1077PubMedCrossRefGoogle Scholar
  10. 10.
    Sakahira H, Enari M, Nagata S (1998) Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 391(6662):96–99PubMedCrossRefGoogle Scholar
  11. 11.
    Deveraux QL, Reed JC (1999) IAP family proteins—suppressors of apoptosis. Genes Dev 13(3):239–252PubMedGoogle Scholar
  12. 12.
    Kasof GM, Gomes BC (2001) Livin, a novel inhibitor of apoptosis protein family member. J Biol Chem 276(6):3238–3246PubMedCrossRefGoogle Scholar
  13. 13.
    Mitsiades N, Mitsiades CS, Poulaki V et al (2002) Biologic sequelae of nuclear factor-kappaB blockade in multiple myeloma: therapeutic applications. Blood 99(11):4079–4086PubMedCrossRefGoogle Scholar
  14. 14.
    Notarbartolo M, Poma P, Perri D, Dusonchet L, Cervello M, D’Alessandro N (2005) Antitumor effects of curcumin, alone or in combination with cisplatin or doxorubicin, on human hepatic cancer cells. Analysis of their possible relationship to changes in NFκB activation levels and in IAP gene expression. Cancer Lett 224(1):53–65PubMedGoogle Scholar
  15. 15.
    Zou T, Rao JN, Guo X et al (2004) NFκB-mediated IAP expression induces resistance of intestinal epithelial cells to apoptosis after polyamine depletion. Am J Physiol Cell Physiol 286(5):C1009–C1018PubMedCrossRefGoogle Scholar
  16. 16.
    Takano J, Tomioka M, Tsubuki S et al (2005) Calpain mediates excitotoxic DNA fragmentation via mitochondrial pathways in adult brains: evidence from calpastatin mutant mice. J Biol Chem 280(16):16175–16184PubMedCrossRefGoogle Scholar
  17. 17.
    Nicotera P, Orrenius S (1998) The role of calcium in apoptosis. Cell Calcium 23(2–3):173–180PubMedCrossRefGoogle Scholar
  18. 18.
    Sharma AK, Rohrer B (2004) Calcium-induced calpain mediates apoptosis via caspase-3 in a mouse photoreceptor cell line. J Biol Chem 279(34):35564–35572PubMedCrossRefGoogle Scholar
  19. 19.
    Chan SL, Mattson MP (1999) Caspase and calpain substrates: roles in synaptic plasticity and cell death. J Neurosci Res 58(1):167–190PubMedCrossRefGoogle Scholar
  20. 20.
    Wang KK (2000) Calpain and caspase: can you tell the difference? Trends Neurosci 23(1):20–26PubMedCrossRefGoogle Scholar
  21. 21.
    Ray SK, Fidan M, Nowak MW, Wilford GG, Hogan EL, Banik NL (2000) Oxidative stress and Ca2+ influx upregulate calpain and induce apoptosis in PC12 cells. Brain Res 852(2):326–334PubMedCrossRefGoogle Scholar
  22. 22.
    Gao G, Dou QP (2000) N-terminal cleavage of bax by calpain generates a potent proapoptotic 18-kDa fragment that promotes bcl-2-independent cytochrome c release and apoptotic cell death. J Cell Biochem 80(1):53–72PubMedCrossRefGoogle Scholar
  23. 23.
    Altznauer F, Conus S, Cavalli A, Folkers G, Simon HU (2004) Calpain-1 regulates Bax and subsequent Smac-dependent caspase-3 activation in neutrophil apoptosis. J Biol Chem 279(7):5947–5957PubMedCrossRefGoogle Scholar
  24. 24.
    Neumar RW, Xu YA, Gada H, Guttmann RP, Siman R (2003) Cross-talk between calpain and caspase proteolytic systems during neuronal apoptosis. J Biol Chem 278(16):14162–14167PubMedCrossRefGoogle Scholar
  25. 25.
    Nath R, Raser KJ, Stafford D et al (1996) Non-erythroid a-spectrin breakdown by calpain and interleukin 1b-converting-enzyme-like protease(s) in apoptotic cells: contributory roles of both protease families in neuronal apoptosis. Biochem J 319(Pt 3):683–690PubMedGoogle Scholar
  26. 26.
    Agarwal KC (1996) Therapeutic actions of garlic constituents. Med Res Rev 16(1):111–124PubMedCrossRefGoogle Scholar
  27. 27.
    Takahashi S, Hakoi K, Yada H, Hirose M, Ito N, Fukushima S (1992) Enhancing effects of diallyl sulfide on hepatocarcinogenesis and inhibitory actions of the related diallyl disulfide on colon and renal carcinogenesis in rats. Carcinogenesis 13(9):1513–1518PubMedCrossRefGoogle Scholar
  28. 28.
    Wargovich MJ, Imada O, Stephens LC (1992) Initiation and post-initiation chemopreventive effects of diallyl sulfide in esophageal carcinogenesis. Cancer Lett 64(1):39–42PubMedCrossRefGoogle Scholar
  29. 29.
    Sparnins VL, Barany G, Wattenberg LW (1988) Effects of organosulfur compounds from garlic and onions on benzo[a]pyrene-induced neoplasia and glutathione S-transferase activity in the mouse. Carcinogenesis 9(1):131–134PubMedCrossRefGoogle Scholar
  30. 30.
    Hayes MA, Rushmore TH, Goldberg MT (1987) Inhibition of hepatocarcinogenic responses to 1,2-dimethylhydrazine by diallyl sulfide, a component of garlic oil. Carcinogenesis 8(8):1155–1157PubMedCrossRefGoogle Scholar
  31. 31.
    Suzui N, Sugie S, Rahman KM et al (1997) Inhibitory effects of diallyl disulfide or aspirin on 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine-induced mammary carcinogenesis in rats. Jpn J Cancer Res 88(8):705–711PubMedGoogle Scholar
  32. 32.
    Arora A, Siddiqui IA, Shukla Y (2004) Modulation of p53 in 7,12-dimethylbenz[a]anthracene-induced skin tumors by diallyl sulfide in Swiss albino mice. Mol Cancer Ther 3(11):1459–1466PubMedGoogle Scholar
  33. 33.
    Nakagawa H, Tsuta K, Kiuchi K, et al (2001) Growth inhibitory effects of diallyl disulfide on human breast cancer cell lines. Carcinogenesis 22(6):891–897PubMedCrossRefGoogle Scholar
  34. 34.
    Hong YS, Ham YA, Choi JH, Kim J (2000) Effects of allyl sulfur compounds and garlic extract on the expression of Bcl-2, Bax, and p53 in non-small cell lung cancer cell lines. Exp Mol Med 32(3):127–134PubMedGoogle Scholar
  35. 35.
    Xiao D, Choi S, Johnson DE et al (2004) Diallyl trisulfide-induced apoptosis in human prostate cancer cells involves c-Jun N-terminal kinase and extracellular-signal regulated kinase-mediated phosphorylation of Bcl-2. Oncogene 23(33):5594–6606PubMedCrossRefGoogle Scholar
  36. 36.
    Herman-Antosiewicz A, Singh SV (2004) Signal transduction pathways leading to cell cycle arrest and apoptosis induction in cancer cells by Allium vegetable-derived organosulfur compounds: a review. Mutat Res 555(1–2):121–131PubMedGoogle Scholar
  37. 37.
    Biedler JL, Helson L, Spengler BA (1973) Morphology and growth, tumorigenicity, and cytogenetics of human neuroblastoma cells in continuous culture. Cancer Res 33(11):2643–2652PubMedGoogle Scholar
  38. 38.
    Ray SK, Wilford GG, Crosby CV, Hogan EL, Banik NL (1999) Diverse stimuli induce calpain overexpression and apoptosis in C6 glioma cells. Brain Res 829(1–2):18–27PubMedCrossRefGoogle Scholar
  39. 39.
    Karmakar S, Weinberg MS, Banik NL, Patel SJ, Ray SK (2006) Activation of multiple molecular mechanisms for apoptosis in human malignant glioblastoma T98G and U87MG cells treated with sulforaphane. Neuroscience 141(3):1265–1280PubMedCrossRefGoogle Scholar
  40. 40.
    Das A, Sribnick EA, Wingrave JM et al (2005) Calpain activation in apoptosis of ventral spinal cord 4.1 (VSC4.1) motoneurons exposed to glutamate: Calpain inhibition provides functional neuroprotection. J Neurosci Res 81(4):551–562PubMedCrossRefGoogle Scholar
  41. 41.
    Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260(6):3440–3450PubMedGoogle Scholar
  42. 42.
    Jiang ST, Wang JH, Chang T, Chen CS (1997) A continuous method for measuring calpain activity. Anal Biochem 244(2):233–238PubMedCrossRefGoogle Scholar
  43. 43.
    Ray SK, Karmakar S, Nowak MW, Banik NL (2006) Inhibition of calpain and caspase-3 prevented apoptosis and preserved electrophysiological properties of voltage-gated and ligand-gated ion channels in rat primary cortical neurons exposed to glutamate. Neuroscience 139(2):577–595PubMedCrossRefGoogle Scholar
  44. 44.
    Karmakar S, Banik NL, Patel SJ, Ray SK (2006) Curcumin activated both receptor-mediated and mitochondria-mediated proteolytic pathways for apoptosis in human glioblastoma T98G cells. Neurosci Lett 407(1):53–58PubMedCrossRefGoogle Scholar
  45. 45.
    Park EK, Kwon KB, Park KI, Park BH, Jhee EC (2002) Role of Ca2+ in diallyl disulfide-induced apoptotic cell death of HCT-15 cells. Exp Mol Med 34(3):250–257PubMedGoogle Scholar
  46. 46.
    Lin HL, Yang JS, Yang JH, et al (2006) The role of Ca2+ on the DADS-induced apoptosis in mouse-rat hybrid retina ganglion cells (N18). Neurochem Res 31(3):383–393PubMedCrossRefGoogle Scholar
  47. 47.
    Sergeev IN (2004) Genistein induces Ca2+-mediated, calpain/caspase-12-dependent apoptosis in breast cancer cells. Biochem Biophys Res Commun 321(2):462–467PubMedCrossRefGoogle Scholar
  48. 48.
    Scoltock AB, Bortner CD, St J, Bird G, Putney JW Jr, Cidlowski JA (2000) A selective requirement for elevated calcium in DNA degradation, but not early events in anti-Fas-induced apoptosis. J Biol Chem 275(39):30586–30596PubMedCrossRefGoogle Scholar
  49. 49.
    Foyouzi-Youssefi R, Arnaudeau S, Borner C, et al (2000) Bcl-2 decreases the free Ca2+ concentration within the endoplasmic reticulum. Proc Natl Acad Sci USA 97(11):5723–5728PubMedCrossRefGoogle Scholar
  50. 50.
    Vanden Abeele F, Skryma R, Shuba Y, et al (2002) Bcl-2-dependent modulation of Ca2+ homeostasis and store-operated channels in prostate cancer cells. Cancer Cell 1(2):169–179PubMedCrossRefGoogle Scholar
  51. 51.
    Hajnoczky G, Davies E, Madesh M (2003) Calcium signaling and apoptosis. Biochem Biophys Res Commun 304(3):445–454PubMedCrossRefGoogle Scholar
  52. 52.
    Sur P, Sribnick EA, Patel SJ, Ray SK, Banik NL (2005) Dexamethasone decreases temozolomide-induced apoptosis in human gliobastoma T98G cells. Glia 50(2):160–167PubMedCrossRefGoogle Scholar
  53. 53.
    Farid P, Gomb SZ, Peter I, Szende B (2001) Bcl-2, p53 and bax in thyroid tumors and their relation to apoptosis. Neoplasma 48(4):299–301PubMedGoogle Scholar
  54. 54.
    Filomeni G, Aquilano K, Rotilio G, Ciriolo MR (2003) Reactive oxygen species-dependent c-Jun NH2-terminal kinase/c-Jun signaling cascade mediates neuroblastoma cell death induced by diallyl disulfide. Cancer Res 63(18):5940–5949PubMedGoogle Scholar
  55. 55.
    Koh SH, Kwon H, Park KH, et al (2005) Protective effect of diallyl disulfide on oxidative stress-injured neuronally differentiated PC12 cells. Mol Brain Res 133(2):176–186PubMedCrossRefGoogle Scholar
  56. 56.
    Dai Z, Zhu WG, Morrison CD, et al (2003) A comprehensive search for DNA amplification in lung cancer identifies inhibitors of apoptosis cIAP1 and cIAP2 as candidate oncogenes. Hum Mol Genet 12(7):791–801PubMedCrossRefGoogle Scholar
  57. 57.
    Verhagen AM, Ekert PG, Pakusch M, et al (2000) Identification of Diablo, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102(1):43–53PubMedCrossRefGoogle Scholar
  58. 58.
    Wilkinson JC, Wilkinson AS, Scott FL, Csomos RA, Salvesen GS, Duckett CS (2004) Neutralization of Smac/Diablo by inhibitors of apoptosis (IAPs). A caspase-independent mechanism for apoptotic inhibition. J Biol Chem 279(49):51082–51090PubMedCrossRefGoogle Scholar
  59. 59.
    Adrain C, Creagh EM, Martin SJ (2001) Apoptosis-associated release of Smac/Diablo from mitochondria requires active caspases and is blocked by Bcl-2. EMBO J 20(23):6627–6636PubMedCrossRefGoogle Scholar
  60. 60.
    Hasenjager A, Gillissen B, Muller A, et al (2004) Smac induces cytochrome c release and apoptosis independently from Bax/Bcl-xL in a strictly caspase-3-dependent manner in human carcinoma cells. Oncogene 23(26):4523–4535PubMedCrossRefGoogle Scholar
  61. 61.
    Beg AA, Baltimore D (1996) An essential role for NFκB in preventing TNF-α-induced cell death. Science 274(5288):782–784PubMedCrossRefGoogle Scholar
  62. 62.
    Jeremias I, Kupatt C, Baumann B, Herr I, Wirth T, Debatin KM (1998) Inhibition of nuclear factor κB activation attenuates apoptosis resistance in lymphoid cells. Blood 91(12):4624–4631PubMedGoogle Scholar
  63. 63.
    Wang CY, Mayo MW, Korneluk RG, Goeddel DV, Baldwin AS Jr (1998) NFκB anti-apoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281(5383):1680–1683PubMedCrossRefGoogle Scholar
  64. 64.
    Lin MW, Tsao LT, Huang LJ, et al (2006) Inhibition of lipopolysaccharide-stimulated NO production by crotafuran B in RAW 264.7 macrophages involves the blockade of NFκB activation through the increase in IκBα synthesis. Toxicol Appl Pharmacol 210(1–2):108–115PubMedCrossRefGoogle Scholar
  65. 65.
    Ide N, Lau BH (2001) Garlic compounds minimize intracellular oxidative stress and inhibit nuclear factor κB activation. J Nutr 131(3s):1020S–1026SPubMedGoogle Scholar
  66. 66.
    Keiss HP, Dirsch VM, Hartung T, et al (2003) Garlic (Allium sativum L.) modulates cytokine expression in lipopolysaccharide-activated human blood thereby inhibiting NFκB activity. J Nutr 133(7):2171–2175PubMedGoogle Scholar
  67. 67.
    Du C, Fang M, Li Y, Li L, Wang X (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102(1):33–42PubMedCrossRefGoogle Scholar
  68. 68.
    Kwon KB, Yoo SJ, Ryu DG, et al (2002) Induction of apoptosis by diallyl disulfide through activation of caspase-3 in human leukemia HL-60 cells. Biochem Pharmacol 63(1):41–47PubMedCrossRefGoogle Scholar
  69. 69.
    Wang KK, Posmantur R, Nath R, et al (1998) Simultaneous degradation of αII- and βII-spectrin by caspase 3 (CPP32) in apoptotic cells. J Biol Chem 273(35):22490–22497PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Surajit Karmakar
    • 1
  • Naren L. Banik
    • 1
  • Sunil J. Patel
    • 1
  • Swapan K. Ray
    • 1
    Email author
  1. 1.Department of NeurosciencesMedical University of South Carolina (MUSC)CharlestonUSA

Personalised recommendations