Skip to main content
Log in

Regulation of the expression of prostate apoptosis response protein 4 (Par-4) in rat granulosa cells

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The par-4 gene, directs the expression of a protein in the rat ventral prostate after apoptotic stimuli but not growth stimulatory, growth arresting or necrotic signals. Since Par-4 expression appears to be ubiquitous we investigated the possibility of Par-4 having a role in the rat ovary granulosa cells apoptotic death. Par-4 mRNA was detected by RT-PCR with oligonucleotides designed to prime Par-4 leucine zipper in the ovaries of 12 day old rats and reached the higher levels in 24 days old rats. In situ hybridization analysis revealed that Par-4 expression is restricted to granulosa cells. PMSG priming of 24 day old rats for 2 days greatly reduced Par-4 expression in granulosa cells as determined by in situ hybridization, RT-PCR of mRNA and protein immunodetection with Western blot. Granulosa cells placed in serum-fee culture, exhibited increased levels of Par-4 mRNA and protein, in good correlation with the degree of apoptosis. The culture-induced increases in Par-4 are significantly prevented by FSH. Transient transfection of granulosa cells with Par-4 leucine zipper domain that functions as a dominant-negative regulator of Par-4 activity resulted in lower rates of apoptosis while overexpression of the full length Par-4 counteracted FSH effects on apoptosis. Par-4 association with PKCζ which is supposed to inhibit this kinase mediated antiapoptotic way is also prevented by FSH and, FSH antiapoptotic effects are counteracted by a PKCζ specific inhibitor. These findings indicate that FSH by suppressing Par-4 expression in the ovary activates PKCζ-dependent antiapoptotic pathway and suggest that Par-4 is part of the mechanism underlying granulosa cells apoptotic demise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hughes FM, Gorospe WC (1991) Biochemical identification of apoptosis (programmed cell death) in granulosa cells: Evidence for a potential mechanism underlying follicular atresia. Endocrinology 129:2415–2422

    PubMed  CAS  Google Scholar 

  2. Tilly JI, Kowalski KI, Johnson AL, Hsueh AJW (1991) Involvement of apoptosis in ovarian follicular atresia and postovulatory regression. Endocrinology 129:2799–2801

    PubMed  CAS  Google Scholar 

  3. Chun S-Y, Eisenhauer KM, Minami S, Billig H, Perlas E, Hsueh AJW (1996) Hormonal regulation of apoptosis in early antral follicles: Follicle-stimulating hormone as a major survival factor. Endocrinology 137:1447–1456

    Article  PubMed  CAS  Google Scholar 

  4. Billig H, Furuta I, Hsueh AJW (1993) Estrogens inhibit and androgens enhance ovarian granulosa cells apoptosis. Endocrinology 133:2204–2212

    Article  PubMed  CAS  Google Scholar 

  5. Tilly JL, Billig H, Kowalski KI, Hsueh AJW (1992) Epidermal growth factor and basic fibroblast growth factor suppress the spontaneous onset of apoptosis in cultures rat ovarian granulosa cells and follicles by a tyrosine kinase-dependent mechanism. Mol Endo 6:1942–1950

    Article  CAS  Google Scholar 

  6. Williams FT, Smith CA, McCarthy NJ, Grimes ES (1992) Apoptosis: final control point in cell biology. T Cell Biol 2:263–267

    Article  CAS  Google Scholar 

  7. Osborne BA, Schwartz LM (1994) Essential genes that regulate apoptosis. T Cell Biol 4:394–399

    Article  CAS  Google Scholar 

  8. Evans GS, Chandler JA (1987) Cell proliferation studies in rat prostate: I. The proliferative role of basal and secretory epithelial cells during normal growth. Prostate 10:163–178

    Article  PubMed  CAS  Google Scholar 

  9. Evans GS, Chandler JA (1987) Cell proliferation studies in the rat prostate: II. The effects of castration and androgen-induced regeneration upon basal and secretory cell proliferation. Prostate 11:339–351

    Article  PubMed  CAS  Google Scholar 

  10. Sandford NL, Searle JW, Kerr JF (1984) Successive waves of apoptosis in the rat prostate after repeated withdrawal of testosterone stimulation. Pathology 16:406–410

    PubMed  CAS  Google Scholar 

  11. Kyprianou N, Isaacs JT (1988) Activation of programmed cell death in the rat ventral prostate after castration. Endocrinology 122:552–5622

    Article  PubMed  CAS  Google Scholar 

  12. English HF, Kyprianou N, Isaacs JT (1989) Relationship between DNA fragmentation and apoptosis in the programmed cell death in the rat prostate following castration. Prostate 15:233–250

    Article  PubMed  CAS  Google Scholar 

  13. Schwartz L, Kosz L, Kay B (1990) Gene activation is required for developmentally programmed cell death. Proc Natl Acad Sci USA 87:6594–6598

    Article  PubMed  CAS  Google Scholar 

  14. Stanisic T, Sadlowsky R, Lee C, Grayhack JT (1978) Partial inhibition of castration-induced ventral prostate regression with actinomycin D and cycloheximide. Invest Urol 16:19–22

    PubMed  CAS  Google Scholar 

  15. Briehl MM, Miesfeld RL (1991) Isolation and characterization of transcripts induced by androgen withdrawal and apoptotic cell death in the rat ventral prostate. Mol Endocrinol 5:1381–1388

    Article  PubMed  CAS  Google Scholar 

  16. Sells SF, Wood DP, Joshi-Barve SS, Muthukumar S, Rangnekar VM (1994) Commonality of the gene programs induced by effectors of apoptosis in androgen-dependent and -independent prostate cells. Cell Growth Diff 5:457–466

    PubMed  CAS  Google Scholar 

  17. Boghaert ER, Sells SF, Walid A-J et al (1997) Immunohistochemical analysis of the proapoptotic protein Par-4 in normal rat tissues. Cell Growth Differ 8:881–890

    PubMed  CAS  Google Scholar 

  18. Guo Q, Fu W, Xie J et al (1998) Par-4 is a mediator of neuronal degeneration associated with the pathogenesis of Alzheimer disease. Nat Med 4:957–962

    Article  PubMed  CAS  Google Scholar 

  19. Duan W, Zhang Z, Gash DM, Mattson MP (1999) Participation of prostate apoptosis response-4 in degeneration of dopaminergic neurons in models of Parkinson's disease. Ann Neurol 46:587–597

    Article  PubMed  CAS  Google Scholar 

  20. Pedersen WA, Luo H, Kruman I, Kasarskis E, Mattson MP (2000) The prostate apoptosis response-4 protein participates in motor degeneration in amyotrophic lateral sclerosis. FASEB J 14:913–924

    PubMed  CAS  Google Scholar 

  21. Kruman II, Nath A, Maragos WF et al (1999) Evidence that Par-4 participates in the pathogenesis of HIV encephalitis. A J Pathol 155:39–46

    CAS  Google Scholar 

  22. Nalca A, Qiu SG, El-Guendy N, Krishnan S, Rangnekar VM (1999) Oncogenic Ras sensitizes cells to apoptosis by Par-4. J Biol Chem 274:29976–29983

    Article  PubMed  CAS  Google Scholar 

  23. Barradas M, Monjas A, Díaz-Meco MT, Serrano M, Moscat J (1999) The downregulation of the pro-apoptotic protein Par-4 is critical for Ras-induced survival and tumor progression. EMBO J 18:6362–6369

    Article  PubMed  CAS  Google Scholar 

  24. Qiu SG, Krishnan S, El-Guendy N, Rangnekar VM (1999) Negative regulation of Par-4 by oncogenic Ras is essential for cellular transformation. Oncogene 18:7115–7123

    Article  PubMed  CAS  Google Scholar 

  25. Colombel MC, Buttyan R (1993) Hormonal control of apoptosis: the rat prostate gland as a model system. Methods Cell Biol 46:369–385

    Article  Google Scholar 

  26. Lopez-Blanco F, Gonzalez-Reyes J, Fanjul LF, Ruiz de Galarreta CM, Quintana J (1998) Chemiluminiscence-based detection of minute amounts of apoptotic DNA. BioTechniques 24:354–358

    PubMed  CAS  Google Scholar 

  27. Santana P, Peña LA, Haimovitz-Friedman A et al (1996) Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis. Cell 86:189–199

    Article  PubMed  CAS  Google Scholar 

  28. McGee EA, Hsueh AJW (2000) Initial and cyclic recruitment of ovarian follicles. Endo Rev 21:200–214

    Article  CAS  Google Scholar 

  29. Sells SF, Han S-S, Muthukkumar S et al (1997) Expression and function of the leucine zipper protein Par-4 in apoptosis. Mol Cell Biol 17:3823–3832

    PubMed  CAS  Google Scholar 

  30. Johnstone RW, See RH, Sells et al (1996) A novel repressor, Par-4, modulates transcription and growth suppression functions of the Wilms’ tumor suppressor WT1. Mol Cell Biol 16:645–6956

    Google Scholar 

  31. Mattson MP, Duan W, Chan SL, Camandola S (1999) Par-4: an emerging pivotal player in neuronal apoptosis and neurodegenerative disorders. J Mol Neurosci 13:17–30

    Article  PubMed  CAS  Google Scholar 

  32. Cook J, Krishnan S, Ananth S, et al (1999) Decreased expression of the proapoptotic protein Par-4 in renal carcinoma. Oncogene 18:205–208

    Google Scholar 

  33. Lucas T, Partscher B, Krishnan S et al (2001) Differential expression levels of Par-4 in melanoma. Melanoma Res 11:379–383

    Article  PubMed  CAS  Google Scholar 

  34. Gurumurthy S, Vasudevan KM, Rangnekar VM (2001) Regulation of apoptosis in prostate cancer. Cancer Metastasis Rev 20:223–243

    Article  Google Scholar 

  35. Díaz-Meco MT, Municio MM, Frutos S, et al (1996) The product of par-4, a gene induced during apoptosis, interacts with the atypical isoforms of protein kinase C. Cell 86:777–786

    Article  PubMed  Google Scholar 

  36. Diaz-Meco MT, Berra E, Municio MM, et al (1993) A dominant negative protein kinase C zeta subspecies blocks NF-kappa B activation. Mol Cell Biol 13:4770–4775

    PubMed  CAS  Google Scholar 

  37. Wooten MW (1999) Function for NF-κB in neuronal survival: regulation by atypical protein kinase c. J Neurosci Res 58:607–611

    Article  PubMed  CAS  Google Scholar 

  38. Camandola S, Mattson MP (2000) Pro-apoptotic action of Par-4 involves inhibition of NFκB and suppression of Bcl-2 expression. J Neurosci Res 61:134–139

    Article  PubMed  CAS  Google Scholar 

  39. Erl W, Hansson GK, de Martin R, Draude G, Weber KS, Weber C (1999) Nuclear factor-κB regulates induction of apoptosis protein-1 expression in vascular smooth muscle cells. Circ Res 84:668–677

    PubMed  CAS  Google Scholar 

  40. Li J, Kim J-M, Liston P, Li M, et al (1998) Expression of Inhibitor of apoptosis proteins (IAPs) in granulosa cells during ovarian follicular development and atresia. Endocrinology 139:1321–1328

    Article  PubMed  CAS  Google Scholar 

  41. Xiao CW, Ash K, Tsang BK (2001) Nuclear factor-κB-mediated X-linked inhibitor of apoptosis protein expression prevents rat granulosa cells from tumor necrosis factor α-induced apoptosis. Endocrinology 142:557–563

    Article  PubMed  CAS  Google Scholar 

  42. El-Guendy N, Zhao Y, Gurumurthy S, Burikhanov R, Rangnekar VM (2003) Identificationof a unique core domain of par-4 sufficient fro selective apoptosis induction in cancer cells. Mol Cell Biol 23:5516–5521

    Article  PubMed  CAS  Google Scholar 

  43. Gurumurthy S, Goswami A, Vasudevan KM, Rangnekar VM (2005) Phosphorylation of Par-4 by protein kinase A is critical for apoptosis. Mol Cell Biol 25:1146–1161

    Article  PubMed  CAS  Google Scholar 

  44. Qiu G, Ahmed M, Sells SF, Mohiuddin M, Weinstein MH, Rangnekar VM (1999) Mutually exclusive expression patterns of Bcl-2 and Par-4 in human prostate tumors consistent with down-regulation of Bcl-2 by Par-4. Oncogene 18:623–631

    Article  PubMed  CAS  Google Scholar 

  45. Boehrer S, Chow KU, Beske F et al (2002) In Lymphatic cells Par-4 sensitizes to apoptosis by down-regulating Bcl-2 and promoting disruption of mitochondrial membrane potential and caspase activation. Cancer Res 62:1768–1775

    PubMed  CAS  Google Scholar 

  46. Tilly JL, Tilly KI, Kenton ML, Johnson AL (1995) Expression of members of the bcl-2 gene family in the immature rat ovary: equine chorionic gonadotropin-mediated inhibition of granulosa cell apoptosis is associated with decreased bax and constitutive bcl-2 and bcl-xlong messenger ribonucleic acid levels. Endocrinology 136:232–241

    Article  PubMed  CAS  Google Scholar 

  47. Hsu SY, Lai RJ, Finegold M, Hsueh AJ (1996) Targeted overexpression of Bcl-2 in ovaries of transgenic mice leads to decreases apoptosis, enhanced folliculogenesis, and increased germ cell tumorogenesis. Endocrinology 137:4837–4843

    Article  PubMed  CAS  Google Scholar 

  48. Woodruff TK, Lyon RJ, Hansen SE, Rice GC, Mather JP (1990) Inhibin and activin locally regulate rat ovarian folliculogenesis. Endocrinology 127:3196–3205

    PubMed  CAS  Google Scholar 

  49. Pelletier J, Buckler AJ, Rogers A, Haber DA, Housman D (1991) Expression of the Wilms’ tumor gene WT1 in the murine urogenital system. Gene Dev 5:1345–1356

    PubMed  CAS  Google Scholar 

  50. Hsu SY, Kubo M, Chun S-Y, Haluska FG Housman DE, Hsueh AJW (1995) Wilms’ tumor protein WT1 as an ovarian transcription factor: decreases in expression during follicle development and repression of inhibin-α gene promoter. Mol Endo 9:1356–1366

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr VM Rangnekar for full length Par-4 plasmid. Also are grateful to Drs Nora Butta and Susana Larrucea for helpful discussions and technical advise on immunoprecipitation studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luisa F. Fanjul.

Additional information

This work was supported by the Direccion General de Enseñanza Superior e Investigación Científica Grants 98/0234 to LFF. VM was a fellow of the Spanish Ministry of Education and Science.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonzalez, I.H., Santana, P., Gonzalez-Robayna, I. et al. Regulation of the expression of prostate apoptosis response protein 4 (Par-4) in rat granulosa cells. Apoptosis 12, 769–779 (2007). https://doi.org/10.1007/s10495-006-0019-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-006-0019-7

Keywords

Navigation