Skip to main content

Advertisement

Log in

Cyclic AMP and Cyclic GMP suppress TNFα-induced hepatocyte apoptosis by inhibiting FADD up-regulation via a protein kinase A-dependent pathway

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Cyclic AMP (cAMP) and cyclic GMP (cGMP) suppress apoptosis in many cell types, including hepatocytes. We have previously shown that membrane-permeable cAMP and cGMP analogs attenuate tumor necrosis factor α plus actinomycin D (TNFα/ActD)-induced apoptosis in hepatocytes at a step upstream of caspase activation and cytochrome c release. Recently we have also shown that FADD levels increase 10 folds in response to TNFα/ActD. Therefore we hypothesized that cAMP and cGMP would inhibit FADD upregulation. We show here that cyclic nucleotide analogs dibutyryl cAMP (db-cAMP) and 8-bromo-cGMP (Br-cGMP) inhibit cell death and the cleavages of multiple caspases including caspase-10, -9, -8, -3, and -2, as well as suppress FADD protein up-regulation in TNFα/ActD-induced apoptosis. The inhibitory effects of cAMP were seen at lower concentrations than cGMP. Both cAMP and cGMP prevented FADD overexpression and cell death in hepatocytes transfected with the FADD gene. A protein kinase A (PKA) inhibitor, KT 5720, reversed the inhibition of FADD protein levels induced by cAMP or cGMP. In conclusion, our findings indicate that cAMP and cGMP prevent TNFα/ActD-induced apoptosis in hepatocytes and that this occurs in association with a near complete inhibition of the upregulation of FADD via a PKA-dependent mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

TNFα:

tumor necrosis factor-α

ActD:

actinomycin D

FADD:

Fas-associated death domain protein

db-cAMP:

dibutyryl cyclic adenosine monophosphate

Br-cGMP:

8-bromoguanosine 3′,5′-cyclic monophosphate

PKA.:

protein kinase A; Z-VAD-fmk, benzyloxycarbonyl-Val-Ala-Asp fluoromethyl ketone

Ac-IETD-CHO:

Ac-Ile-Glu-Thr-Asp-CHO

(Sρ)-cAMPS:

Adenosine 3′,5′-cyclic monophosphorothioate, Sp-isomer

TUNEL:

Terminal deoxynucleotidyl transferase-mediated dUTP-nick end labeling

References

  1. Schwede F, Maronde E, Genieser H, Jastorff B. Cyclic nucleotide analogs as biochemical tools and prospective drugs. Pharmacol Ther 2000; 87: 199–226.

    Article  CAS  PubMed  Google Scholar 

  2. Koyama H, Bornfeldt KE, Fukumoto S, Nishizawa Y. Molecular pathways of cyclic nucleotide-induced inhibition of arterial smooth muscle cell proliferation. J Cell Physiol 2001; 186: 1–10.

    Article  CAS  PubMed  Google Scholar 

  3. Muhl H, Nitsch D, Sandau K, Brune B, Varga Z, Pfeilschifter J. Apoptosis is triggered by the cyclic AMP signalling pathway in renal mesangial cells. FEBS Lett 1996; 382: 271–275.

    Article  CAS  PubMed  Google Scholar 

  4. Yin Y, Allen PD, Jia L, Kelsey SM, Newland AC. 8-Cl-adenosine mediated cytotoxicity and sensitization of T- lymphoblastic leukemia cells to TNFalpha-induced apoptosis is via inactivation of NF-kappaB. Leuk Res 2001; 25: 423–431.

    Article  CAS  PubMed  Google Scholar 

  5. Niwa M, Hara A, Kanamori Y, Matsuno H, Kozawa O, Yoshimi N, Mori H, Uematsu T. Inhibition of tumor necrosis factor-alpha induced neutrophil apoptosis by cyclic AMP: involvement of caspase cascade. Eur J Pharmacol 1999; 371: 59–67.

    Article  CAS  PubMed  Google Scholar 

  6. Webster CR, Anwer MS. Cyclic adenosine monophosphate-mediated protection against bile acid- induced apoptosis in cultured rat hepatocytes. Hepatology 1998; 27: 1324–1331.

    Article  CAS  PubMed  Google Scholar 

  7. Takano M, Arai T, Mokuno Y, Nishimura H, Nimura Y, Yoshikai Y. Dibutyryl cyclic adenosine monophosphate protects mice against tumor necrosis factor-alpha-induced hepatocyte apoptosis accompanied by increased heat shock protein 70 expression. Cell Stress Chaperones 1998; 3: 109–117.

    Article  CAS  PubMed  Google Scholar 

  8. Orlov SN, Thorin-Trescases N, Dulin NO, Dam TV, Fortuno MA, Tremblay J, Hamet P. Activation of cAMP signaling transiently inhibits apoptosis in vascular smooth muscle cells in a site upstream of caspase-3. Cell Death Differ 1999; 6: 661–672.

    Article  CAS  PubMed  Google Scholar 

  9. Garcia-Bermejo L, Perez C, Vilaboa NE, de Blas E, Aller P. cAMP increasing agents attenuate the generation of apoptosis by etoposide in promonocytic leukemia cells. J Cell Sci 1998; 111(Pt 5): 637–644.

    CAS  PubMed  Google Scholar 

  10. Schildberg FA, Schulz S, Dombrowski F, Minor T. Cyclic AMP alleviates endoplasmic stress and programmed cell death induced by lipopolysaccharides in human endothelial cells. Cell and Tissue Research 2005; 320: 91–98.

    Article  CAS  PubMed  Google Scholar 

  11. Kim YM, Talanian RV, Billiar TR. Nitric oxide inhibits apoptosis by preventing increases in caspase-3- like activity via two distinct mechanisms. J Biol Chem 1997; 272: 31138–31148.

    Article  CAS  PubMed  Google Scholar 

  12. Saavedra JE, Billiar TR, Williams DL, Kim YM, Watkins SC, Keefer LK. Targeting nitric oxide (NO) delivery in vivo. Design of a liver- selective NO donor prodrug that blocks tumor necrosis factor-alpha- induced apoptosis and toxicity in the liver. J Med Chem 1997; 40: 1947–1954.

    Article  CAS  PubMed  Google Scholar 

  13. Zamora R, Alarcon L, Vodovotz Y, Betten B, Kim PK, Gibson KF, Billiar TR. Nitric oxide suppresses the expression of Bcl-2 binding protein BNIP3 in hepatocytes. J Biol Chem 2001; 276: 46887–46895.

    Article  CAS  PubMed  Google Scholar 

  14. Li J, Yang S, Billiar TR. Cyclic nucleotides suppress tumor necrosis factor alpha-mediated apoptosis by inhibiting caspase activation and cytochrome c release in primary hepatocytes via a mechanism independent of Akt activation. J Biol Chem 2000; 275: 13026–13034.

    Article  CAS  PubMed  Google Scholar 

  15. Chinnaiyan AM, O’Rourke K, Tewari M, Dixit VM. FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 1995; 81: 505–512.

    Article  CAS  PubMed  Google Scholar 

  16. Nagata S. Apoptosis by death factor. Cell 1997; 88: 355–365.

    Article  CAS  PubMed  Google Scholar 

  17. Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science 1998; 281: 1305–1308.

    Article  CAS  PubMed  Google Scholar 

  18. Thornberry NA, Lazebnik Y. Caspases: enemies within. Science 1998; 281: 1312–1316.

    Article  CAS  PubMed  Google Scholar 

  19. Muzio M, Chinnaiyan AM, Kischkel FC, O’Rourke K, Shevchenko A, Ni J, Scaffidi C, Bretz JD, Zhang M, Gentz R, Mann M, Krammer PH, Peter ME, Dixit VM. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death–inducing signaling complex. Cell 1996; 85: 817–827.

    Article  CAS  PubMed  Google Scholar 

  20. Luo X, Budihardjo I, Zou H, Slaughter C, Wang X. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 1998; 94: 481–490.

    Article  CAS  PubMed  Google Scholar 

  21. Luschen S, Ussat S, Scherer G, Kabelitz D, Adam-Klages S. Sensitization to death receptor cytotoxicity by inhibition of fas- associated death domain protein (FADD)/caspase signaling. Requirement of cell cycle progression. J Biol Chem 2000; 275: 24670–24678.

    Article  CAS  PubMed  Google Scholar 

  22. Nagy B, Yeh WC, Mak TW, Chiu SM, Separovic D. FADD null mouse embryonic fibroblasts undergo apoptosis after photosensitization with the silicon phthalocyanine Pc 4. Arch Biochem Biophy 2001; 385: 194–202.

    Article  CAS  Google Scholar 

  23. Han Z, Pantazis P, Wyche JH, Kouttab N, Kidd VJ, Hendrickson EA. A Fas-associated death domain protein-dependent mechanism mediates the apoptotic action of non-steroidal anti-inflammatory drugs in the human leukemic Jurkat cell line. J Biol Chem 2001; 276: 38748–38754.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang J, Cado D, Chen A, Kabra NH, Winoto A. Fas-mediated apoptosis and activation-induced T-cell proliferation are defective in mice lacking FADD/Mort1. Nature 1998; 392: 296–300.

    Article  CAS  PubMed  Google Scholar 

  25. Kuang AA, Diehl GE, Zhang J, Winoto A. FADD is required for DR4- and DR5-mediated apoptosis: lack of trail- induced apoptosis in FADD-deficient mouse embryonic fibroblasts. J Biol Chem 2000; 275: 25065–25068.

    Article  CAS  PubMed  Google Scholar 

  26. Seino K, Setoguchi Y, Ogino T, Kayagaki N, Akiba H, Nakano H, Taniguchi H, Takada Y, Yuzawa K, Todoroki T, Fukuchi Y, Yagita H, Okumura K, Fukao K. Protection against Fas-mediated and tumor necrosis factor receptor 1- mediated liver injury by blockade of FADD without loss of nuclear factor-kappaB activation. Ann Surg 2001; 234: 681–688.

    Article  CAS  PubMed  Google Scholar 

  27. Jones BE, Lo CR, Liu H, Srinivasan A, Streetz K, Valentino KL, Czaja MJ. Hepatocytes sensitized to tumor necrosis factor-alpha cytotoxicity undergo apoptosis through caspase-dependent and caspase-independent pathways. J Biol Chem 2000; 275: 705–712.

    Article  CAS  PubMed  Google Scholar 

  28. Suzuki A, Araki T, Miura M, Tsutomi Y. Functional absence of FADD in PLC/PRF/5 hepatoma cells: possible involvement in the transformation to hepatoma in HBV-infected hepatocytes. Proc Soc Exp Biol Med 1999; 221: 72–79.

    Article  CAS  PubMed  Google Scholar 

  29. Streetz K, Leifeld L, Grundmann D, Ramakers J, Eckert K, Spengler U, Brenner D, Manns M, Trautwein C. Tumor necrosis factor alpha in the pathogenesis of human and murine fulminant hepatic failure. Gastroenterology 2000; 119: 446–460.

    Article  CAS  PubMed  Google Scholar 

  30. Kim PKM, Wang YN, Gambotto A, Kim YM, Weller R, Zuckerbraun BS, Hua Y, Watkins SC, Billiar TR. Hepatocyte Fas-associating death domain protein/mediator of receptor-induced toxicity (FADD/MORT1) levels increase in response to pro-apoptotic stimuli. Journal of Biological Chemistry 2002; 277: 38855–38862.

    Article  CAS  PubMed  Google Scholar 

  31. Stadler J, Bergonia HA, Di Silvio M, Sweetland MA, Billiar TR, Simmons RL, Lancaster JRJr. Nonheme iron-nitrosyl complex formation in rat hepatocytes: detection by electron paramagnetic resonance spectroscopy. Arch Biochem Biophy 1993; 302: 4–11.

    Article  CAS  Google Scholar 

  32. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227: 680–685.

    Article  CAS  PubMed  Google Scholar 

  33. Gavrieli Y, Sherman Y, Ben Sasson SA. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 1992; 119: 493–501.

    Article  CAS  PubMed  Google Scholar 

  34. Higuchi H, Bronk SF, Takikawa Y, Werneburg N, Takimoto R, El Deiry W, Gores GJ. The bile acid glycochenodeoxycholate induces trail-receptor 2/DR5 expression and apoptosis. J Biol Chem 2001; 276: 38610–38618.

    Article  CAS  PubMed  Google Scholar 

  35. Ozoren N, Kim K, Burns TF, Dicker DT, Moscioni AD, El Deiry WS. The caspase 9 inhibitor Z-LEHD-FMK protects human liver cells while permitting death of cancer cells exposed to tumor necrosis factor- related apoptosis-inducing ligand. Cancer Res 2000; 60: 6259–6265.

    CAS  PubMed  Google Scholar 

  36. Akbar S, Minor T. Significance and molecular targets of protein kinase A during cAMP- mediated protection of cold stored liver grafts. Cell Mol Life Sci 2001; 58: 1708–1714.

    Article  CAS  PubMed  Google Scholar 

  37. Sirotkin AV, Makarevich AV, Pivko J, Kotwica J, Genieser H, Bulla J. Effect of cGMP analogues and protein kinase G blocker on secretory activity, apoptosis and the cAMP/protein kinase A system in porcine ovarian granulosa cells in vitro. J Steroid Biochem Mol Biol 2000; 74: 1–9.

    Article  CAS  PubMed  Google Scholar 

  38. Takuma K, Phuagphong P, Lee E, Mori K, Baba A, Matsuda T. Anti-apoptotic effect of cGMP in cultured astrocytes: inhibition by cGMP-dependent protein kinase of mitochondrial permeable transition pore. J Biol Chem 2001; 276: 48093–48099.

    CAS  PubMed  Google Scholar 

  39. Martin MC, Allan LA, Lickrish M, Sampson C, Morrice N, Clarke PR. Protein kinase A regulates caspase-9 activation by Apaf-1 downstream of cytochrome c. Journal of Biological Chemistry 2005; 280: 15449–15455.

    Article  CAS  PubMed  Google Scholar 

  40. Schneider P, Tschopp J. Apoptosis induced by death receptors. Pharm Acta Helv 2000; 74: 281–286.

    Article  CAS  PubMed  Google Scholar 

  41. Strasser A, Newton K. FADD/MORT1, a signal transducer that can promote cell death or cell growth. Int J Biochem Cell Biol 1999; 31: 533–537.

    Article  CAS  PubMed  Google Scholar 

  42. Huang DC, Hahne M, Schroeter M, Frei K, Fontana A, Villunger A, Newton K, Tschopp J, Strasser A. Activation of Fas by FasL induces apoptosis by a mechanism that cannot be blocked by Bcl-2 or Bcl-x(L). Proc Natl Acad Sci U.S.A 1999; 96: 14871–14876.

    Article  CAS  PubMed  Google Scholar 

  43. Matsumura H, Shimizu Y, Ohsawa Y, Kawahara A, Uchiyama Y, Nagata S. Necrotic death pathway in Fas receptor signaling. J Cell Biol 2000; 151: 1247–1256.

    Article  CAS  PubMed  Google Scholar 

  44. Boone E, Vanden Berghe T, Van Loo G, De Wilde G, De Wael N, Vercammen D, Fiers W, Haegeman G, Vandenabeele P. Structure/Function analysis of p55 tumor necrosis factor receptor and fas-associated death domain. Effect on necrosis in L929sA cells. J Biol Chem 2000; 275: 37596–37603.

    Article  CAS  PubMed  Google Scholar 

  45. Cross TG, Scheel-Toellner D, Henriquez NV, Deacon E, Salmon M, Lord JM. Serine/threonine protein kinases and apoptosis. Exp Cell Res 2000; 256: 34–41.

    Article  CAS  PubMed  Google Scholar 

  46. Huang NK, Lin YW, Huang CL, Messing RO, Chern Y. Activation of protein kinase A and atypical protein kinase C by A(2A) adenosine receptors antagonizes apoptosis due to serum deprivation in PC12 cells. J Biol Chem 2001; 276: 13838–13846.

    CAS  PubMed  Google Scholar 

  47. Parvathenani LK, Buescher ES, Chacon-Cruz E, Beebe SJ. Type I cAMP-dependent protein kinase delays apoptosis in human neutrophils at a site upstream of caspase-3. J Biol Chem 1998; 273: 6736–6743.

    Article  CAS  PubMed  Google Scholar 

  48. Scaffidi C, Volkland J, Blomberg I, Hoffmann I, Krammer PH, Peter ME. Phosphorylation of FADD/MORT1 at serine 194 and association with a 70- kDa cell cycle-regulated protein kinase. J Immunol 2000; 164: 1236–1242.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. R. Billiar.

Additional information

Supported by the National Institutes of Health Grant GM-44100 (to T.R.B).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Kim, P.K.M., Peng, X. et al. Cyclic AMP and Cyclic GMP suppress TNFα-induced hepatocyte apoptosis by inhibiting FADD up-regulation via a protein kinase A-dependent pathway. Apoptosis 11, 441–451 (2006). https://doi.org/10.1007/s10495-005-4293-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-005-4293-6

Keywords

Navigation