Skip to main content
Log in

Reactive oxygen species induce signals that lead to apoptotic DNA degradation in primary CD4+ T cells

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Reactive oxygen species are toxic to cells but they may also have active roles in transducing apoptotic events. To study the role of reactive oxygen species in growth factor depletion induced apoptosis of human primary CD4+ T cells, we used a synthetic manganese porphyrin superoxide dismutase mimetic to detoxify superoxide anions formed during apoptosis. Apoptosis of primary CD4+ T cells was characterized by generation of superoxide anions, plasma membrane phosphatidyl-serine translocation, loss of mitochondrial membrane potential, activation of caspase 3, condensation of chromatin, as well as DNA degradation. The detoxification of superoxide anions did not influence plasma membrane phosphatidyl-serine translocation, or chromatin condensation, and only marginally inhibited the loss of mitochondrial membrane potential and the formation of DNA strand breaks. In contrast, the detoxification of superoxide anions significantly reduced caspase 3 activity and almost completely inhibited the apoptotic decrease in total cellular DNA content as measured by propidium iodide staining. Our results indicate that reactive oxygen anions induce signals leading to efficient DNA degradation after the initial formation of DNA strand breaks. Thus, reactive oxygen anions have active roles in signaling that lead to the apoptotic events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Danial NN, Korsmeyer SJ. Cell death: Critical control points. Cell 2004; 116: 205–219.

    Article  CAS  PubMed  Google Scholar 

  2. Nagata S. Apoptosis by death factor. Cell 1997; 88: 355–365.

    Article  CAS  PubMed  Google Scholar 

  3. Thornberry NA, Lazebnik Y. Caspases: Enemies within. Science 1998; 281: 1312–1316.

    Article  CAS  PubMed  Google Scholar 

  4. Budihardjo I, Oliver H, Lutter M, Luo X, Wang X. Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol 1999; 15: 269–290.

    Article  CAS  PubMed  Google Scholar 

  5. Green DR, Kroemer G. The pathophysiology of mitochondrial cell death. Science 2004; 305: 626–629.

    Article  CAS  PubMed  Google Scholar 

  6. Luo X, Budihardjo I, Zou H, Slaughter C, Wang X. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 1998; 94: 481–490.

    Article  CAS  PubMed  Google Scholar 

  7. Green DR, Reed JC. Mitochondria and apoptosis. Science 1998; 281: 1309–1312.

    CAS  PubMed  Google Scholar 

  8. Cai J, Jones DP. Superoxide in apoptosis. Mitochondrial generation triggered by cytochrome c loss. J Biol Chem 1998; 273: 11401–11404.

    CAS  PubMed  Google Scholar 

  9. Wang X. The expanding role of mitochondria in apoptosis. Genes Dev 2001; 15: 2922–2933.

    CAS  PubMed  Google Scholar 

  10. Newmeyer DD, Ferguson-Miller S. Mitochondria: Releasing power for life and unleashing the machineries of death. Cell 2003; 112: 481–490.

    CAS  PubMed  Google Scholar 

  11. Davis KL, Martin E, Turko IV, Murad F. Novel effects of nitric oxide. Annu Rev Pharmacol Toxicol 2001; 41: 203–236.

    Article  CAS  PubMed  Google Scholar 

  12. Hildeman DA, Mitchell T, Teague TK, et al. Reactive oxygen species regulate activation-induced T cell apoptosis. Immunity 1999; 10: 735–744.

    Article  CAS  PubMed  Google Scholar 

  13. Hildeman DA, Zhu Y, Mitchell TC, Kappler J, Marrack P. Molecular mechanisms of activated T cell death in vivo. Curr Opin Immunol 2002; 14: 354–359.

    Article  CAS  PubMed  Google Scholar 

  14. Hildeman DA, Mitchell T, Aronow B, et al. Control of Bcl-2 expression by reactive oxygen species. Proc Natl Acad Sci USA 2003; 100: 15035–15040.

    Article  CAS  PubMed  Google Scholar 

  15. Hildeman DA, Mitchell T, Kappler J, Marrack P. T cell apoptosis and reactive oxygen species. J Clin Invest 2003; 111: 575–581.

    Article  CAS  PubMed  Google Scholar 

  16. Tripathi P, Hildeman D. Sensitization of T cells to apoptosis—A role for ROS? Apoptosis 2004; 9: 515–523.

    Article  CAS  PubMed  Google Scholar 

  17. Pajusto M, Ihalainen N, Pelkonen J, Tarkkanen J, Mattila PS. Human in vivo-activated CD45R0(+) CD4(+) T cells are susceptible to spontaneous apoptosis that can be inhibited by the chemokine CXCL12 and IL-2, -6, -7, and -15. Eur J Immunol 2004; 34: 2771–2780.

    Article  CAS  PubMed  Google Scholar 

  18. Pajusto M, Tarkkanen J, Mattila PS. Platelet endothelial cell adhesion molecule-1 is expressed in adenoidal crypt epithelial cells. Scand J Immunol 2005; 61: 82–86.

    Article  CAS  PubMed  Google Scholar 

  19. Petit PX, O'Connor JE, Grunwald D, Brown SC. Analysis of the membrane potential of rat- and mouse-liver mitochondria by flow cytometry and possible applications. Eur J Biochem 1990; 194: 389–397.

    Article  CAS  PubMed  Google Scholar 

  20. Castilho RF, Ward MW, Nicholls DG. Oxidative stress, mitochondrial function, and acute glutamate excitotoxicity in cultured cerebellar granule cells. J Neurochem 1999; 72: 1394–1401.

    Article  CAS  PubMed  Google Scholar 

  21. Yu LY, Korhonen L, Martinez R, et al. Regulation of sympathetic neuron and neuroblastoma cell death by XIAP and its association with proteasomes in neural cells. Mol Cell Neurosci 2003; 22: 308–318.

    Article  CAS  PubMed  Google Scholar 

  22. Tzung SP, Kim KM, Basanez G, et al. Antimycin A mimics a cell-death-inducing Bcl-2 homology domain 3. Nat Cell Biol 2001; 3: 183–191.

    Article  CAS  PubMed  Google Scholar 

  23. Zhuang J, Ren Y, Snowden RT, et al. Dissociation of phagocyte recognition of cells undergoing apoptosis from other features of the apoptotic program. J Biol Chem 1998; 273: 15628–15632.

    Article  CAS  PubMed  Google Scholar 

  24. Wilhelm S, Roloff S, Hacker G. Inhibition of etoposide-induced apoptotic events by azide. Immunol Lett 1997; 59: 53–59.

    Article  CAS  PubMed  Google Scholar 

  25. Gauuan PJ, Trova MP, Gregor-Boros L, et al. Superoxide dismutase mimetics: Synthesis and structure-activity relationship study of MnTBAP analogues. Bioorg Med Chem 2002; 10: 3013–3021.

    CAS  PubMed  Google Scholar 

  26. Estevez AG, Crow JP, Sampson JB, et al. Induction of nitric oxide-dependent apoptosis in motor neurons by zinc-deficient superoxide dismutase. Science 1999; 286: 2498–2500.

    CAS  PubMed  Google Scholar 

  27. Adler V, Yin Z, Tew KD, Ronai Z. Role of redox potential and reactive oxygen species in stress signaling. Oncogene 1999; 18: 6104–6111.

    Article  CAS  PubMed  Google Scholar 

  28. Zamzami N, Marchetti P, Castedo M, et al. Reduction in mitochondrial potential constitutes an early irreversible step of programmed lymphocyte death in vivo. J Exp Med 1995; 181: 1661–1672.

    Article  CAS  PubMed  Google Scholar 

  29. Ziegler U, Groscurth P. Morphological features of cell death. News Physiol Sci 2004; 19: 124–128.

    CAS  PubMed  Google Scholar 

  30. Cornelissen M, Philippe J, De Sitter S, De Ridder L. Annexin V expression in apoptotic peripheral blood lymphocytes: An electron microscopic evaluation. Apoptosis 2002; 7: 41–47.

    CAS  PubMed  Google Scholar 

  31. Lipscomb LA, Zhou FX, Presnell SR, et al. Structure of DNA-porphyrin complex. Biochemistry 1996; 35: 2818–2823.

    Article  CAS  PubMed  Google Scholar 

  32. van Loo G, Schotte P, van Gurp M, et al. Endonuclease G: A mitochondrial protein released in apoptosis and involved in caspase-independent DNA degradation. Cell Death Differ 2001; 8: 1136–1142.

    PubMed  Google Scholar 

  33. Susin SA, Lorenzo HK, Zamzami N, et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 1999; 397: 441–446.

    CAS  PubMed  Google Scholar 

  34. Higuchi Y. Chromosomal DNA fragmentation in apoptosis and necrosis induced by oxidative stress. Biochem Pharmacol 2003; 66: 1527–1535.

    Article  CAS  PubMed  Google Scholar 

  35. Enari M, Sakahira H, Yokoyama H, et al. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 1998; 391: 43–50.

    CAS  PubMed  Google Scholar 

  36. Nagata S, Nagase H, Kawane K, Mukae N, Fukuyama H. Degradation of chromosomal DNA during apoptosis. Cell Death Differ 2003; 10: 108–116.

    Article  CAS  PubMed  Google Scholar 

  37. Nakamura H, Nakamura K, Yodoi J. Redox regulation of cellular activation. Annu Rev Immunol 1997; 15: 351–369.

    Article  CAS  PubMed  Google Scholar 

  38. Parrish JZ, Yang C, Shen B, Xue D. CRN-1, a Caenorhabditis elegans FEN-1 homologue, cooperates with CPS-6/EndoG to promote apoptotic DNA degradation. EMBO J 2003; 22: 3451–3460.

    Article  CAS  PubMed  Google Scholar 

  39. Lipton SA, Choi YB, Pan ZH, et al. A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 1993; 364: 626–632.

    CAS  PubMed  Google Scholar 

  40. Lin YS, Lin CF, Lei HY, et al. Antibody-mediated endothelial cell damage via nitric oxide. Curr Pharm Des 2004; 10: 213–221.

    Article  CAS  PubMed  Google Scholar 

  41. Sade H, Sarin A. Reactive oxygen species regulate quiescent T-cell apoptosis via the BH3-only proapoptotic protein BIM. Cell Death Differ 2004; 11: 416–423.

    Article  CAS  PubMed  Google Scholar 

  42. Mayer M, Noble M. N-acetyl-L-cysteine is a pluripotent protector against cell death and enhancer of trophic factor-mediated cell survival in vitro. Proc Natl Acad Sci USA 1994; 91: 7496–7500.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pajusto, M., Toivonen, T.H., Tarkkanen, J. et al. Reactive oxygen species induce signals that lead to apoptotic DNA degradation in primary CD4+ T cells. Apoptosis 10, 1433–1443 (2005). https://doi.org/10.1007/s10495-005-2050-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-005-2050-5

Keywords

Navigation