Skip to main content
Log in

Apoptosis in UV-C light irradiated p53 wild-type, apaf-1 and p53 knockout mouse embryonic fibroblasts: Interplay of receptor and mitochondrial pathway

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Mouse embryonic fibroblasts (MEFs) deficient for the transcription factor p53 are hypersensitive to UV-C light. They also show a reduced recovery from UV-C induced replication blockage and are unable to repair UV-C photoproducts. In this study, we utilized wild-type (wt), Apaf-1 deficient (apaf-1−/−) and p53 deficient (p53−/−) MEFs in order to elucidate the role of non-repaired UV-C lesions in apoptotic signalling. Corresponding with the cellular sensitivity determined by the WST assay, p53−/− cells displayed the highest level of apoptosis, whereas wt cells showed moderate apoptosis after UV-C irradiation. Apaf1−/− cells were most resistant. In wt cells apoptosis was executed both via the mitochondrial and the receptor-mediated pathway, as shown by Bcl-2 decline, induction of fasR and activation of caspases-3,8,9. In apaf-1−/− (p53+/+) cells, the mitochondrial pathway was blocked downstream of Bcl-2, indicating that in this case apoptosis was mediated via the induction of fasR and caspase-3,8 activation. In p53 deficient cells, non-repaired UV-C induced DNA lesions triggered sustained up-regulation of fas ligand (fasL) mRNA, which was not seen in wt and apaf-1−/− cells. Therefore, in p53−/− MEFs, the receptor/ligand triggered pathway appeared to be dominant. This was confirmed by significant reduction of apoptosis after DN-FADD transfection. As opposed to wt and apaf-1−/− cells, p53 deficient MEFs showed no induction of Fas receptor and no Bcl-2 decline. Nevertheless, the resulting caspase-8 and -3 activation was stronger compared to wt and apaf-1−/− cells. The data indicate that UV-C light activates in MEFs both the Fas (CD95, Apo-1) receptor and the mitochondrial damage pathways. In p53−/− cells, however, the high level of non-repaired DNA damage forces signalling by fasL upregulation, leading to enhanced UV-C-induced apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Christmann M, Tomicic MT, Roos WP, Kaina B. Mechanisms of human DNA repair: An update. Toxicology 2003; 193: 3–34.

    Article  CAS  PubMed  Google Scholar 

  2. el-Deiry WS, Kern SE, Pietenpol JA, Kinzler KW, Vogelstein B. Definition of a consensus binding site for p53. Nat Genet 1992; 1: 45–49.

    Article  CAS  PubMed  Google Scholar 

  3. Maltzman W, Czyzyk L. UV irradiation stimulates levels of p53 cellular tumor antigen in nontransformed mouse cells. Mol Cell Biol 1984; 4: 1689–1694.

    CAS  PubMed  Google Scholar 

  4. Chehab NH, Malikzay A, Stavridi ES, Halazonetis TD. Phosphorylation of Ser-20 mediates stabilization of human p53 in response to DNA damage. Proc Natl Acad Sci USA 1999; 96: 13777–13782.

    Article  CAS  PubMed  Google Scholar 

  5. Khosravi R, Maya R, Gottlieb T, Oren M, Shiloh Y, Shkedy D. Rapid ATM-dependent phosphorylation of MDM2 precedes p53 accumulation in response to DNA damage. Proc Natl Acad Sci USA 1999; 96: 14973–14977.

    Article  CAS  PubMed  Google Scholar 

  6. Lakin ND, Jackson SP. Regulation of p53 in response to DNA damage. Oncogene 1999; 18: 7644–7655.

    CAS  PubMed  Google Scholar 

  7. Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW. Participation of p53 protein in the cellular response to DNA damage. Cancer Res 1991; 51: 6304–6311.

    CAS  PubMed  Google Scholar 

  8. Zhou J, Ahn J, Wilson SH, Prives C. A role for p53 in base excision repair. Embo J 2001; 20: 914–923.

    Article  CAS  PubMed  Google Scholar 

  9. Seo YR, Fishel ML, Amundson S, Kelley MR, Smith ML. Implication of p53 in base excision DNA repair: In vivo evidence. Oncogene 2002; 21: 731–737.

    CAS  PubMed  Google Scholar 

  10. Susse S, Janz C, Janus F, Deppert W, Wiesmuller L. Role of heteroduplex joints in the functional interactions between human Rad51 and wild-type p53. Oncogene 2000; 19: 4500–4512.

    CAS  PubMed  Google Scholar 

  11. Rafferty JA, Clarke AR, Sellappan D, Koref MS, Frayling IM, Margison GP. Induction of murine O6-alkylguanine-DNA-alkyltransferase in response to ionising radiation is p53 gene dose dependent. Oncogene 1996; 12: 693–697.

    CAS  PubMed  Google Scholar 

  12. Grombacher T, Eichhorn U, Kaina B. p53 is involved in regulation of the DNA repair gene O6-methylguanine-DNA methyltransferase (MGMT) by DNA damaging agents. Oncogene 1998; 17: 845–851.

    Article  CAS  PubMed  Google Scholar 

  13. Smith ML, Ford JM, Hollander MC, et al. p53-mediated DNA repair responses to UV radiation: Studies of mouse cells lacking p53, p21, and/or gadd45 genes. Mol Cell Biol 2000; 20: 3705–3714.

    CAS  PubMed  Google Scholar 

  14. Prost S, Ford JM, Taylor C, Doig J, Harrison DJ. Hepatitis B x protein inhibits p53-dependent DNA repair in primary mouse hepatocytes. J Biol Chem 1998; 273: 33327–33332.

    Article  CAS  PubMed  Google Scholar 

  15. Lackinger D, Kaina B. Primary mouse fibroblasts deficient for c-Fos, p53 or for both proteins are hypersensitive to UV light and alkylating agent-induced chromosomal breakage and apoptosis. Mutat Res 2000; 457: 113–123.

    CAS  PubMed  Google Scholar 

  16. Lackinger D, Eichhorn U, Kaina B. Effect of ultraviolet light, methyl methanesulfonate and ionizing radiation on the genotoxic response and apoptosis of mouse fibroblasts lacking c-Fos, p53 or both. Mutagenesis 2001; 16: 233–241.

    Article  CAS  PubMed  Google Scholar 

  17. Dunkern TR, Kaina B. Cell proliferation and DNA breaks are involved in ultraviolet light-induced apoptosis in nucleotide excision repair-deficient Chinese hamster cells. Mol Biol Cell 2002; 13: 348–361.

    Article  CAS  PubMed  Google Scholar 

  18. Dunkern TR, Fritz G, Kaina B. Ultraviolet light-induced DNA damage triggers apoptosis in nucleotide excision repair-deficient cells via Bcl-2 decline and caspase-3/−8 activation. Oncogene 2001; 20: 6026–6038.

    Article  CAS  PubMed  Google Scholar 

  19. Tomicic MT, Thust R, Kaina B. Ganciclovir-induced apoptosis in HSV-1 thymidine kinase expressing cells: Critical role of DNA breaks, Bcl-2 decline and caspase-9 activation. Oncogene 2002; 21: 2141–2153.

    Article  CAS  PubMed  Google Scholar 

  20. Tomicic MT, Kaina B. Hamster Bcl-2 protein is cleaved in vitro and in cells by caspase-9 and caspase-3. Biochem Biophys Res Commun 2001; 281: 404–408.

    Article  CAS  PubMed  Google Scholar 

  21. Milosevic J, Hoffarth S, Huber C, Schuler M. The DNA damage-induced decrease of Bcl-2 is secondary to the activation of apoptotic effector caspases. Oncogene 2003; 22: 6852–6856.

    Article  CAS  PubMed  Google Scholar 

  22. Christmann M, Kaina B. Nuclear translocation of mismatch repair proteins MSH2 and MSH6 as a response of cells to alkylating agents. J Biol Chem 2000; 275: 36256–36262.

    Article  CAS  PubMed  Google Scholar 

  23. Christmann M, Tomicic MT, Kaina B. Phosphorylation of mismatch repair proteins MSH2 and MSH6 affecting MutS{alpha} mismatch-binding activity. Nucl Acids Res 2002; 30: 1959–1966.

    Article  CAS  PubMed  Google Scholar 

  24. Fortin A, Cregan SP, MacLaurin JG, et al. APAF1 is a key transcriptional target for p53 in the regulation of neuronal cell death. J Cell Biol 2001; 155: 207–216.

    Article  CAS  PubMed  Google Scholar 

  25. Muller M, Wilder S, Bannasch D, et al. p53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs. J Exp Med 1998; 188: 2033–2045.

    Article  CAS  PubMed  Google Scholar 

  26. Brozovic A, Fritz G, Christmann M, et al. Long-term activation of SAPK/JNK, p38 kinase and fas-L expression by cisplatin is attenuated in human carcinoma cells that acquired drug resistance. Int J Cancer 2004; 112: 974–985.

    Article  CAS  PubMed  Google Scholar 

  27. Mansouri A, Ridgway LD, Korapati AL, et al. Sustained activation of JNK/p38 MAPK pathways in response to cisplatin leads to Fas ligand induction and cell death in ovarian carcinoma cells. J Biol Chem 2003; 278: 19245–19256.

    Article  CAS  PubMed  Google Scholar 

  28. Chinnaiyan AM, O'Rourke K, Tewari M, Dixit VM. FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 1995; 81: 505–512.

    Article  CAS  PubMed  Google Scholar 

  29. Roos W, Baumgartner M, Kaina B. Apoptosis triggered by DNA damage O6-methylguanine in human lymphocytes requires DNA replication and is mediated by p53 and Fas/CD95/Apo-1. Oncogene 2004; 23: 359–367.

    Article  CAS  PubMed  Google Scholar 

  30. Chakraborty M, Qiu SG, Vasudevan KM, Rangnekar VM. Par-4 drives trafficking and activation of Fas and Fasl to induce prostate cancer cell apoptosis and tumor regression. Cancer Res 2001; 61: 7255–7263.

    CAS  PubMed  Google Scholar 

  31. Boehrer S, Nowak D, Hochmuth S, et al. Daxx overexpression in T-lymphoblastic Jurkat cells enhances caspase-dependent death receptor- and drug-induced apoptosis in distinct ways. Cell Signal 2005; 17: 581–595.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Kaina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomicic, M.T., Christmann, M. & Kaina, B. Apoptosis in UV-C light irradiated p53 wild-type, apaf-1 and p53 knockout mouse embryonic fibroblasts: Interplay of receptor and mitochondrial pathway. Apoptosis 10, 1295–1304 (2005). https://doi.org/10.1007/s10495-005-1392-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-005-1392-3

Keywords

Navigation