, Volume 10, Issue 5, pp 987–996 | Cite as

Expression of an anti apoptotic recombinant short peptide in mammalian cells

  • S. Matza-Porges
  • I. Horresh
  • E. Tavor
  • A. PanetEmail author
  • A. Honigman


Understanding the mechanisms of the apoptotic and anti apoptotic processes may lead to a better way to control these cascades. Here we demonstrated for the first time the feasibility to express a short functional peptide in mammalian cells that abrogates the apoptosis cascade through interference with the proteolytic activity of the initiator caspase 9 and the executing caspase 3 enzymes. The expression of a short peptide that includes the pseudo-substrate motif of the apoptosis inhibitor protein P35 (Asp-Gln-Met-Asp) leads to the abrogation of cell death induced through either the mitochondrial or the death receptors pathways.

Short open reading frames have been detected in several mammalian mRNAs, primarily upstream of the main long reading frame (uORFs), however, direct evidence for de-novo peptides translation has not been provided. Utilizing biochemical and imaging techniques we demonstrate here that the functional recombinant peptide was localized to the cytpoplasmic fraction of the cell.

In conclusion, this work demonstrates that ribosomes recognize short ORFs to translate stable short recombinant peptides in mammalian cells. Expression of these intracellular peptides results in the knock down of apoptotic processes to generate apoptosis resistant stable cells.


apoptosis inhibition caspase 3 peptide expression short ORF 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nicholson DW, Thornberry NA. Apoptosis. Life and death decisions. Science 2003; 10:299(5604): 214–215.CrossRefGoogle Scholar
  2. 2.
    Latham PW. Therapeutic peptides revisited. Nature Biotechnol 1999; 17: 755–757.CrossRefGoogle Scholar
  3. 3.
    Becker JW, Rotonda J, Soisson SM, et al. Reducing the peptidyl features of caspase-3 inhibitors: A structural analysis. J Med Chem 2004; 47(10): 2466–2474.CrossRefPubMedGoogle Scholar
  4. 4.
    Charriaut-Marlangue C. Apoptosis: a target for neuroprotection. Therapie 2004; 59(2): 185–190.PubMedGoogle Scholar
  5. 5.
    Kieber-Emmons T, Murali R, Greene MI. Therapeutic peptides and peptidomimetics. Curr Opin Biotechnol 1997; 8: 435–441.CrossRefPubMedGoogle Scholar
  6. 6.
    McBride JD, Leatherbarrow RJ. Synthetic peptide mimics of the Bowman-Birk inhibitor protein. Curr Med Chem 2001; 8: 909–917.PubMedGoogle Scholar
  7. 7.
    Xu XM, Chen Y, Yang S, et al.. Peptide with three hyaluronan binding motifs inhibits tumor growth and induces apoptosis. Cancer Res 2003; 63: 5685–5690.PubMedGoogle Scholar
  8. 8.
    Smith JW, Ruoslahti E. Harvesting molecular diversity-biology’s new commodity. Biotechnol Genet Eng Rev 1997; 14: 51–65.PubMedGoogle Scholar
  9. 9.
    Smith GP. Surface presentation of protein epitopes using bacteriophage, expression systems. Curr Opin Biotechnol 1991; 2: 668–673.CrossRefPubMedGoogle Scholar
  10. 10.
    Scott JK, Craig L. Random peptide libraries. Curr Opin Biotechnol 1994; 5: 40–48.CrossRefPubMedGoogle Scholar
  11. 11.
    Smith GP, Petrenko VA. Phage Display. Division of Biological Sciences 1997; 391–410.Google Scholar
  12. 12.
    Kay BK, Kurakin AV, DeRuyscher RH. From peptides to drugs via phage display. Drug Discovery Today 1998; 3: 370–378.CrossRefGoogle Scholar
  13. 13.
    Blum JH, Dove SH, Hochschild A, Mekalanos JJ. Isolation of peptide aptamers that inhibit intracellular processes. Proc Natl Acad Sci 2000; 97: 2241–2246.CrossRefPubMedGoogle Scholar
  14. 14.
    Morris MC, Depollier J, Mery J, Heitz F, Divita G. A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nat Biotechnol 2001; 19: 1173–1176.CrossRefPubMedGoogle Scholar
  15. 15.
    Lindsey K. Plant peptide hormones: The long and the short of it. Curr Biol 2001; 11: 741–742.CrossRefGoogle Scholar
  16. 16.
    Wagepetersen HS, Sonnewald U, Schousboe A. The GABA paradox: Multiple roles as metabolite, neurotransmitter, and neurodifferentiative agent. J Neurochem 1999; 73: 1335–1342.CrossRefPubMedGoogle Scholar
  17. 17.
    Morris DR, Geballe AP. Upstream open reading frames as regulators of mRNA translation. Mol Cell Biol 2000; 20: 8635–8642.CrossRefPubMedGoogle Scholar
  18. 18.
    Child SJ, Miller MK, Geblle AP. Translational control by an upstream open reading frame in the HER-2/neu Transcript. J Biol Chem1999; 274: 24335–24341.CrossRefPubMedGoogle Scholar
  19. 19.
    Parola AL, Kobilka BK. The peptide product of a 5′ leader cistron in the beta 2 adrenergic receptor mRNA inhibits receptor synthesis. J Biol Chem 1994; 269: 4497–4505.PubMedGoogle Scholar
  20. 20.
    Nilsson IB, Svensson SP, Monstein HJ. Molecular cloning of a putative Ciona intestinalis Cionin receptor, a new member of the CCK/gastrin receptor family. Gene 2003; 323: 79–88.CrossRefPubMedGoogle Scholar
  21. 21.
    Child S, Miller MK, Geballe AP. Cell type-dependent and –independent control of HER-2/neu translation. Int J Biochem Cell Biol 1999; 31: 201–213.CrossRefPubMedGoogle Scholar
  22. 22.
    Gaba A, Wang Z, Krishnamoorthy T, Hinnebusch AG, Sachs MS. Physical evidence for distinct mechanisms of translational control by upstream open reading frames. EMBO J 2001; 20: 6453–6463.CrossRefPubMedGoogle Scholar
  23. 23.
    Kozak M. Initiation of translation in prokaryotes and eukaryotes. Gene 1999; 234: 187–208.CrossRefPubMedGoogle Scholar
  24. 24.
    Yu X, Warner JR, Expression of a micro-protein. J Biol Chem 2001; 276: 33821–33825.CrossRefPubMedGoogle Scholar
  25. 25.
    Sousa C, Johansson C, Charon C, et al.. Translational and structural requirements of the early nodulin gene enod40, a short open reading frame-containing RNA, for elicitation of a cell specific growth response in the alfalfa root cortex. Mol Cell Biol 2001; 21: 354–366.CrossRefPubMedGoogle Scholar
  26. 26.
    Rohrig H, Schmidt J, Miklashevichs E, Schell J, John M. Soybean ENOD40 encodes two peptides that bind to sucrose synthase. Proc Natl Acad Sci 2002; 99: 1915–1920.CrossRefPubMedGoogle Scholar
  27. 27.
    Xu X, Leo C, Jang Y. et al.. Dominant effector genetics in mammalian cells. Nat Genet 2001; 27: 23–29.CrossRefPubMedGoogle Scholar
  28. 28.
    Lorens JB, Bennett MK, Pearsall MD. et al.. Retroviral delivery of peptide modulators of cellular functions. Mol Ther 2000; 1: 438–447.CrossRefPubMedGoogle Scholar
  29. 29.
    Matza-Porges S, Tavor E, Panet A, Honigman A. Intracellular expression of a functional short peptide confers resistance to apoptosis. Exp Cell Res 2003; 290; 60–67.CrossRefPubMedGoogle Scholar
  30. 30.
    Miller AD, Rosman GJ. Improved retroviral vectors for gene transfer and expression. Biotechniques1989; 7: 980–990.PubMedGoogle Scholar
  31. 31.
    Ehlers EM, Kuhnel W, Wiedemann GJ. Hyperthermia and mafosfamid in a human-derived malignant pleural mesothelioma cell line. J Cancer Clin Oncol 2002; 128: 65–72.CrossRefGoogle Scholar
  32. 32.
    Vermes I, Hanen C, Reutelingsperger C. Flow cytometry of apoptotic cell death.J Immunol Meth2000; 243: 167–190.CrossRefGoogle Scholar
  33. 33.
    Park HS, Huh S, Kim Y, et al.. Selenite negatively regulates caspase-3 through a redox mechanism. J Biol Chem 2000; 275: 8487–8491.CrossRefPubMedGoogle Scholar
  34. 34.
    Beck WT, Mo YY, Bhat UG. Cytotoxic signalling by inhibitors of DNA topoisomerase II. Biochem Soc Trans2001; 29: 702–703.CrossRefPubMedGoogle Scholar
  35. 35.
    Siddik ZH. Cisplatin: Mode of cytotoxic action and molecular basis of resistance. Oncogene 2003; 22: 7265–7279.CrossRefPubMedGoogle Scholar
  36. 36.
    Ashkenazi A, Dixit VM. Death receptors: Signaling and modulation. Science 1998; 281: 1305–1308.PubMedGoogle Scholar
  37. 37.
    Wajant H. The Fas signaling pathway: More than a paradigm. Science 200; 296: 1635–1636.CrossRefGoogle Scholar
  38. 38.
    Shi Y. Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell 2002; 9: 459–470.CrossRefPubMedGoogle Scholar
  39. 39.
    Creage EM, Martin SJ. Caspases: Cellular demolition experts. Biochemic Society 2001; 29: 696–702.CrossRefGoogle Scholar
  40. 40.
    Ariumi Y, Ueda K, Masutani M, et al.. In vivo phosphorylation of poly (ADP-ribose) polymerase is independent of its activation. FEBS Letters 1998; 436: 288–292.CrossRefPubMedGoogle Scholar
  41. 41.
    Uchida M, Hanai S, Uematsu N, Sawamoto K, Miwa M, Uchida K. Genetic and functional analysis of PARP, a DNA strand break-binding enzyme. Mutat Res2001; 477: 89–96.PubMedGoogle Scholar
  42. 42.
    Simbulan-Rosinthal CM, Rosenthal DS, Iyer S, Boulares AH, Smulson ME. Transient poly (ADP-ribosyl) ation of nuclear proteins and role of poly (ADP-ribose) polymerase in the early stages of apoptosis. J Biol Chem 1998; 273: 13703–13712.CrossRefPubMedGoogle Scholar
  43. 43.
    Torchilin VP, Lukyanov AN. Peptide and protein drug delivery to and into tumors: Challenges and solutions. Drug Discov Today 2003; 8: 259–266.CrossRefPubMedGoogle Scholar
  44. 44.
    Beidler DR, Tewari M, Friesen PD, Poirier G, Dixit VM. The baculovirus p35 protein inhibits Fas-and tumor necrosis factor—induced apoptosis. J Biol Chem 1995; 270: 16526–16528.CrossRefPubMedGoogle Scholar
  45. 45.
    Zhou Q, Krebs JF, Snipas SJ, et al.. Interaction of the baculovirus anti-apoptotic protein p35 with caspases. Specificity, kinetics, and characterization of the caspase/p35 complex. Biochemistry 1998; 37: 10757–10765.CrossRefPubMedGoogle Scholar
  46. 46.
    Viswanath V, Wu Z, Fonk C, Wei Q, Boonpoueang R, Andersen JK. Transgenic mice neuronally expressing baculobiral p35 are resistant to diverse types of induced apoptosis, including seizure-associated neurodegeneration. Proc Natl Acad Sci 2000; 97: 2270–2284.CrossRefPubMedGoogle Scholar
  47. 47.
    Beidler DR, Tewari M, Friesen PD, Poirier G, Dixit VM. The baculovirus p35 protein inhibits Fas-and tumor necrosis factor-induced apoptosis. J Biol Chem 1995; 270: 16526–16528.CrossRefPubMedGoogle Scholar
  48. 48.
    Ekert PG, Silke J, Vaux DL. Inhibition of apoptosis and clonogenic survival of cells expressing crmA variants: optimal caspase substrates are not necessarily optimal inhibitors. EMBO 1999; 18: 330–338.CrossRefGoogle Scholar
  49. 49.
    Xu G, Cirilli M, Huang Y, Rich RL, Myszaka DG, Wu H. Xu G, Cirilli M, Huang Y, Rich RL, Myszaka DG, Wu H. Covalent inhibition revealed by the crystal structure of three caspase-8/P35 complex Nature 2001; 410: 494–497.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • S. Matza-Porges
    • 1
  • I. Horresh
    • 1
  • E. Tavor
    • 1
  • A. Panet
    • 1
    Email author
  • A. Honigman
    • 1
  1. 1.Department of VirologyThe Hebrew University-Hadassah Medical School, The Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations