Skip to main content
Log in

Procaspase-2S inhibits procaspase-3 processing and activation, preventing ROCK-1-mediated apoptotic blebbing and body formation in human B lymphoma Namalwa cells

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Procaspase-2S has been reported to selectively prevent membrane blebbing and apoptotic body formation in human monocytic-like leukemic U937 cells after etoposide (VP-16) treatment (Droin et al., Oncogene 20. 260–269, 2001). Here, we show that procaspase-2S overexpressed in human B lymphoma Namalwa cells inhibits procaspase-3 processing and activation, preventing cleavage and activation of Rho GTPase-associated ROCK-1 kinase. Failure of ROCK-1 activation in Namalwa cells correlates with a sustained delay in the appearance of membrane blebbing and apoptotic body formation after VP-16 treatment. Reciprocal coimmunoprecipitation experiments indicate that procaspase-2S binds to procaspase-3, but not procaspase-2L and -9 in untreated and VP-16-treated Namalwa cells. These data suggest that procaspase-2S-mediated anti-apoptotic effects are associated with inhibition of the processing and activation of procaspase-3 in VP-16-treated cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Ac-DEVD-AMC:

acetyl-Asp-Glu-Val-Asp-7-amino-4-methylcoumarin

Ha-tag:

hemagglutinin epitope Tag sequences

His-tag:

histidine Tag sequences

PAK2:

p21-activated kinase

ROCK-1:

Rho-associated kinase 1

SDS-PAGE:

sodium dodecyl sulfate-polyacrylamide gel electrophoresis

VP-16:

etoposide

z-VDVAD-AFC:

benzyloxycarbonyl-Val-Asp-Val-Ala-Asp-7-amino-4-trifluoromethylcoumarin.

References

  1. Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science 1995; 267: 1456&1462.

    CAS  PubMed  Google Scholar 

  2. Kaufmann SH. Induction of endonucleolytic DNA cleavage in human acute myelogenous leukemia cells by etoposide, camptothecin, and other cytotoxic anticancer drugs: A cautionary note. Cancer Res 1989; 49: 5870&5878.

    CAS  PubMed  Google Scholar 

  3. Barry MA, Behnke CA, Eastman A. Activation of programmed cell death (apoptosis) by cisplatin, other anticancer drugs, toxins and hyperthermia. Biochem Pharmacol 1990; 40: 2353&2362.

    CAS  PubMed  Google Scholar 

  4. Bertrand R, Sarang M, Jenkin J, Kerrigan D, Pommier Y. Differential induction of secondary DNA fragmentation by topoisomerase II inhibitors in human tumor cell lines with amplified c-myc expression. Cancer Res 1991; 51: 6280&6285.

    CAS  PubMed  Google Scholar 

  5. Kerr JF, Wyllie AH, Currie AR. Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972; 26: 239&257.

    CAS  PubMed  Google Scholar 

  6. Wyllie AH, Morris RG, Smith AL, Dunlop D. Chromatin cleavage in apoptosis: Association with condensed chromatin morphology and dependence on macromolecular synthesis. J Pathol 1984; 142: 67&77.

    CAS  PubMed  Google Scholar 

  7. Alnemri ES, Livingston DJ, Nicholson DW, et al. Human ICE/CED-3 protease nomenclature. Cell 1996; 87: 171.

    CAS  PubMed  Google Scholar 

  8. Cryns V, Yuan JY, Proteases to die for. Genes Dev 1998; 12: 1551&1570.

    CAS  PubMed  Google Scholar 

  9. Salvesen GS, Dixit VM. Caspase activation: The induced-proximity model. Proc Natl Acad Sci USA 1999; 96: 10964&10967.

    CAS  PubMed  Google Scholar 

  10. Nicholson DW. Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ 1999; 6: 1028&1042.

    CAS  PubMed  Google Scholar 

  11. Schmitt E, Sane AT, Bertrand R. Activation and role of caspases in chemotherapy-induced apoptosis. Drug Resist Updates 1999; 2: 21&29.

    CAS  Google Scholar 

  12. Earnshaw WC, Martin LM, Kaufmann SH. Mammalian caspases: Structure, activation, substrates and functions during apoptosis. Annu Rev Biochem 1999; 68: 383&424.

    CAS  PubMed  Google Scholar 

  13. Zhang JD, Reedy MC, Hannun YA, Obeid LM. Inhibition of caspases inhibits the release of apoptotic bodies: Bcl-2 inhibits the initiation of formation of apoptotic bodies in chemotherapeutic agent-induced apoptosis. J Cell Biol 1999; 145: 99&108.

    CAS  PubMed  Google Scholar 

  14. Cotter TG, Lennon SV, Glynn JM, Green DR. Microfilament-disrupting agents prevent the formation of apoptotic bodies in tumor cells undergoing apoptosis. Cancer Res 1992; 52: 997&1005.

    CAS  PubMed  Google Scholar 

  15. Suarez-Huerta N, Mosselmans R, Dumont JE, Robaye B. Actin depolymerization and polymerization are required during apoptosis in endothelial cells. J Cell Physiol 2000; 184: 239&245.

    CAS  PubMed  Google Scholar 

  16. Coleman ML, Sahai EA, Yeo M, Bosch M, Dewar A, Olson MF. Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nat Cell Biol 2001; 3: 339&345.

    CAS  PubMed  Google Scholar 

  17. Sebbagh M, Renvoize C, Hamelin J, Riche N, Bertoglio J, Breard J. Caspase-3-mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing. Nat Cell Biol 2001; 3: 346&352.

    CAS  PubMed  Google Scholar 

  18. Coleman ML, Olson MF. Rho GTPase signalling pathways in the morphological changes associated with apoptosis. Cell Death Differ 2002; 9: 493&504.

    CAS  PubMed  Google Scholar 

  19. Rudel T, Bokoch GM. Membrane and morphological changes in apoptotic cells regulated by caspase-mediated activation of Pak2. Science 1997; 276: 1571&1574.

    CAS  PubMed  Google Scholar 

  20. Droin N, Rebe C, Bichat F, Hammann A, Bertrand R, Solary E. Modulation of apoptosis by procaspase-2 short isoform: Selective inhibition of chromatin condensation, apoptotic body formation and phosphatidylserine externalization. Oncogene 2001; 20: 260&269.

    CAS  PubMed  Google Scholar 

  21. Schmitt E, Cimoli G, Steyaert A, Bertrand R. Bcl-xL modulates apoptosis induced by anticancer drugs and delays DEVDase and DNA fragmentation-promoting activities. Exp Cell Res 1998; 240: 107&121.

    CAS  PubMed  Google Scholar 

  22. Slee EA, Harte MT, Kluck RM, et al. Ordering the cytochrome c-initiated caspase cascade: Hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J Cell Biol 1999; 144: 281&292.

    CAS  PubMed  Google Scholar 

  23. Droin N, Beauchemin M, Solary E, Bertrand R. Identification of a caspase-2 isoform that behaves as an endogenous inhibitor of the caspase cascade. Cancer Res 2000; 60: 7039&7047.

    CAS  PubMed  Google Scholar 

  24. Schmitt E, Paquet C, Beauchemin M, Bertrand R. Bcl-xES, a BH4- and BH2-containing antiapoptotic protein, delays Bax oligomer formation and binds Apaf-1, blocking procaspase 9 activation. Oncogene 2004; 23: 3915&3931.

    CAS  PubMed  Google Scholar 

  25. Schmitt E, Steyaert A, Cimoli G, Bertrand R. Bax-alpha promotes apoptosis induced by cancer chemotherapy and accelerates the activation of caspase 3-like cysteine proteases in p53 double mutant B lymphoma Namalwa cells. Cell Death Differ 1998; 5: 506&516.

    CAS  PubMed  Google Scholar 

  26. Fernandes-Alnemri T, Litwack G, Alnemri ES. CPP32, a novel human apoptotic protein with homology to Caenorhabditis elegans cell death protein Ced-3 and mammalian interleukin-1 beta-converting enzyme. J Biol Chem 1994; 269: 30761&30764.

    CAS  PubMed  Google Scholar 

  27. Nicholson DW, Ali A, Thornberry NA, et al. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis.Nature 1995; 376: 37&43.

    CAS  PubMed  Google Scholar 

  28. Shi Y. Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell 2002; 9: 459&470.

    CAS  PubMed  Google Scholar 

  29. Wang L, Miura M, Bergeron L, Zhu H, Yuan J. Ich-1, an Ice/ced-3-related gene, encodes both positive and negative regulators of programmed cell death. Cell 1994; 78: 739&750.

    CAS  PubMed  Google Scholar 

  30. Krajewska M, HG, Krajewski S, Zapata JM, Shabaik A, Gascoyne R, Reed JC. Immunohistochemical analysis of in vivo patterns of expression of CPP32 (Caspase-3), a cell death protease. Cancer Res 1997; 57: 1605&1613.

    CAS  PubMed  Google Scholar 

  31. Droin N, Dubrez L, Eymin B, et al. Upregulation of Casp genes in human tumor cells undergoing etoposide-induced apoptosis. Oncogene 1998; 16: 2885&2894.

    CAS  PubMed  Google Scholar 

  32. Logette E, Wotawa A, Solier S, Desoche L, Solary E, Carcos L. The human caspase-2 gene: Alternative promoters, pre-mRNA splicing and AUG usage direct isoform-specific expression. Oncogene 2003; 22: 935&946.

    Article  CAS  PubMed  Google Scholar 

  33. Soller S, Lansiaux A, Logette E, et al. Topoisomerase I and II inhibitors control caspase-2 pre-messenger RNA splicing in human cells. Mol Cancer Res 2004; 2: 53&61.

    PubMed  Google Scholar 

  34. Martins LM, Kottke TJ, Kaufmann SH, Earnshaw WC. Phosphorylated forms of activated caspases are present in cytosol from HL-60 cells during etoposide-induced apoptosis. Blood 1998; 92: 3042&3049.

    CAS  PubMed  Google Scholar 

  35. Cardone MH, Roy N, Stennicke HR, et al. Regulation of cell death protease caspase-9 by phosphorylation. Science 1998; 282: 1318&1321.

    CAS  PubMed  Google Scholar 

  36. Mannick JB, Schonhoff C, Papeta N, et al. S-Nitrosylation of mitochondrial caspases. J Cell Biol 2001; 154: 1111&1116.

    CAS  PubMed  Google Scholar 

  37. Huang H, Joazeiro CA, Bonfoco E, Kamada S, Leverson JD, Hunter T.The inhibitor of apoptosis, cIAP2, functions as a ubiquitin-protein ligase and promotes in vitro monoubiquitination of caspases 3 and 7. J Biol Chem 2000; 275 26661&26664.

    CAS  PubMed  Google Scholar 

  38. Suzuki Y, Nakabayashi Y, Takahashi R. Ubiquitin-protein ligase activity of X-linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death. Proc Natl Acad Sci USA 2001; 98: 8662&8667.

    CAS  PubMed  Google Scholar 

  39. Colussi PA, Harvey NL, Kumar S. Prodomain-dependent nuclear localization of the caspase-2 (Nedd2) precursor: A novel function for a caspase prodomain. J Biol Chem 1998; 273: 24535&24542.

    Article  CAS  PubMed  Google Scholar 

  40. Mancini M, Nicholson DW, Roy S, et al. The caspase-3 precursor has a cytosolic and mitochondrial distribution: implications for apoptotic signaling. J Cell Biol 1998; 140: 1485&1495.

    CAS  PubMed  Google Scholar 

  41. Susin SA, Lorenzo HK, Zamzami N, et al. Mitochondrial release of caspase-2 and -9 during the apoptotic process. J Exp Med 1999; 189: 381&393.

    CAS  PubMed  Google Scholar 

  42. Mancini M, Machamer CE, Roy S, et al. Caspase-2 is localized at the Golgi complex and cleaves golgin-160 during apoptosis. J Cell Biol 2000; 149: 603&612.

    CAS  PubMed  Google Scholar 

  43. Ito A, Uehara T, Nomura Y. Isolation of Ich-1S (caspase-2S)-binding protein that partially inhibits caspase activity. FEBS Lett 2000; 470: 360&364.

    CAS  PubMed  Google Scholar 

  44. Daniels H, Bokoch G. p21-activated protein kinase: A crucial component of morphological signaling? Trends Biochem Sci 1999; 24: 350&355.

    CAS  PubMed  Google Scholar 

  45. Leverrier Y, Ridley AJ. Apoptosis: Caspases orchestrate the ROCK ’n’ bleb. Nat Cell Biol 2001; 3: E91&E92.

    CAS  PubMed  Google Scholar 

  46. Sanders LC, Matsumura F, Bokoch GM, De Lanerolle P. Inhibition of myosin light chain kinase by p21 activated kinase. Science 1999; 283: 2083&2085.

    CAS  PubMed  Google Scholar 

  47. Goeckeler ZM, Masaracchia RA, Zeng Q, Chew TL, Gallagher P, Wysolmerski RB. Phosphorylation of myosin light chain kinase by p21-activated kinase PAK2. J Biol Chem 2000; 275: 18366&18374.

    CAS  PubMed  Google Scholar 

  48. Porter A, Janicke R. Emerging roles of caspase-3 in apoptosis. Cell Death Diff 1999; 6: 99&104.

    CAS  Google Scholar 

  49. Liu XS, Zou H, Slaughter C, Wang XD. DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 1997; 89: 175&184.

    CAS  PubMed  Google Scholar 

  50. Liu XS, Li P, Widlak P, et al. The 40-Kda subunit of DNA fragmentation factor induces DNA fragmentation and chromatin condensation during apoptosis. Proc Natl Acad Sci USA 1998; 95: 8461&8466.

    CAS  PubMed  Google Scholar 

  51. Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S. A caspase-activated DNAse that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 1998; 391: 43&50.

    CAS  PubMed  Google Scholar 

  52. Bruno S, DelBino G, Lassota P, Giaretti W, Darynkiewicz Z. Inhibitors of proteases prevent endonucleolysis accompanying apoptotic death of HL60 leukemic cells and normal thymocytes. Leukemia 1992; 6: 1113&1120.

    CAS  PubMed  Google Scholar 

  53. Weaver VM, Lach B, Walker PR, Sikorska M. Role of proteolysis in apoptosis: Involvement of serine proteases in internucleosomal DNA fragmentation in immature thymocytes. Biochem Cell Biol 1993; 71: 488&500.

    Article  CAS  PubMed  Google Scholar 

  54. Yoshida A, Takauji R, Inuzuka M, Ueda T, Nakamura T. Role of serine and Ice-like proteases in induction of apoptosis by etoposide in human leukemia Hl-60 cells. Leukemia 1996; 10: 821&824.

    CAS  PubMed  Google Scholar 

  55. Hara SS, Halicka HD, Bruno S, Gong JP, Traganos F, Darzynkiewicz Z. Effect of protease inhibitors on early events of apoptosis. Exp Cell Res 1996; 223: 372&384.

    CAS  PubMed  Google Scholar 

  56. Ghibelli L, Maresca V, Coppola S, Gualandi G. Protease inhibitors block apoptosis at intermediate stages: A compared analysis of DNA fragmentation and apoptotic nuclear morphology. FEBS Lett 1995; 377: 9&14.

    CAS  PubMed  Google Scholar 

  57. Shimizu S, Eguchi Y, Kamiike W, Matsuda H, Tsujimoto Y. Bcl-2 expression prevents activation of the Ice protease cascade. Oncogene 1996; 12: 2251&2257.

    CAS  PubMed  Google Scholar 

  58. Sané AT, Bertrand R. Distinct steps in DNA fragmentation pathway during camptothecin-induced apoptosis involved caspase-, benzyloxycarbonyl- and N-tosyl-L-phenylalanylchloromethyl ketone-sensitive activities. Cancer Res 1998; 58: 3066&3072.

    PubMed  Google Scholar 

  59. Wright SC, Wei QS, Zhong J, Zheng H, Kinder DH, Larrick JW. Purification of a 24-kD protease from apoptotic tumor cells that activates DNA fragmentation. J Exp Med 1994; 180: 2113&2123.

    CAS  PubMed  Google Scholar 

  60. Torriglia A, Perani P, Brossas JY, et al. L-Dnase II, a molecule that links proteases and endonucleases in apoptosis, derives from the ubiquitous serpin leukocyte elastase inhibitor. Mol Cell Biol 1998; 18: 3612&3619.

    CAS  PubMed  Google Scholar 

  61. Yoshida A, Pourquier P, Pommier Y. Purification and characterization of a Mg2+-dependent endonuclease (AN34) from etoposide-treated human leukemia HL-60 cells undergoing apoptosis. Cancer Res 1998; 58: 2576&2582.

    CAS  PubMed  Google Scholar 

  62. Li LY, Luo X, Wang X. Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 2001; 412: 95&99.

    CAS  PubMed  Google Scholar 

  63. Duan H, Dixit VM. Raidd is a new death adaptor molecule. Nature 1997; 385: 86&89.

    CAS  PubMed  Google Scholar 

  64. Ahmad M, Srinivasula SM, Wang LJ, et al. Cradd, a novel human apoptotic adaptor molecule for caspase-2, and Fas/Tumor necrosis factor receptor-interacting protein Rip. Cancer Res 1997 57: 615&619.

    CAS  PubMed  Google Scholar 

  65. Lassus P, Opitz-Araya X, Lazebnik Y. Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization. Science 2002; 297: 1352&1354.

    CAS  PubMed  Google Scholar 

  66. Read SH, Baliga BC, Ekert PG, Vaux DL, Kumar S. A novel Apaf-1-independent putative caspase-2 activation complex. J Cell Biol 2002; 159: 739&745.

    CAS  PubMed  Google Scholar 

  67. Tinel A, Tschopp J. The PIDDosome, a protein complex implicated in activation of caspase-2 in response to genotoxic stress. Science 2004; 304: 843&846.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Bertrand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parent, N., Sané, AT., Droin, N. et al. Procaspase-2S inhibits procaspase-3 processing and activation, preventing ROCK-1-mediated apoptotic blebbing and body formation in human B lymphoma Namalwa cells. Apoptosis 10, 313–322 (2005). https://doi.org/10.1007/s10495-005-0805-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-005-0805-7

Keywords

Navigation