Skip to main content
Log in

Wake Prediction in 3D Porous–Fluid Flows: A Numerical Study Using a Brinkman Penalization LBM Approach

  • Research
  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The simulation of the wake past porous obstacles is numerically challenging because since it requires both an accurate model of the porous medium and a good grid resolution in the fluid domain. In this study a single-domain Brinkman penalization technique in a LBM framework is employed to investigate wake prediction in 3D porous–fluid flows. First we assess the ability of the Brinkman model to predict porous flow features with different permeability values (Darcy numbers). In particular the flow over a porous bed is studied to characterize the ability of this approach to predict the thickness of the porous boundary layer (called Brinkman boundary layer) and the slip velocity at the porous/fluid interface. The porous boundary layer is well described with this model and a finer grid resolution at the wall is needed for low permeability values (low Darcy numbers). Then the impact of these quantities on the wake prediction of a 3D porous sphere is studied for various Darcy and Reynolds numbers. It is shown that wake transitions are well recovered and some further studies are made in terms of grid resolution. Some preliminary results are presented for higher Reynolds numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Angot, P., Bruneau, C.-H., Fabrie, P.: A penalization method to take into account obstacles in incompressible viscous flows. Numer. Math. 81, 497–520 (1999)

    Article  MathSciNet  Google Scholar 

  • Beavers, G.S., Joseph, D.D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30(1), 197–207 (1967)

    Article  Google Scholar 

  • Breugem, W.P., Boersma, B.J., Uittenbogaard, R.E.: The laminar boundary layer over a permeable wall. Transp. Porous Med. 59, 267–300 (2005)

    Article  MathSciNet  Google Scholar 

  • Bruneau, C.-H., Mortazavi, I.: Contrôle passif d’écoulements incompressibles autour d’obstacles à l’aide de milieux poreux. CRAS Ser. IIB Mech. 329(7), 517–521 (2001)

    Google Scholar 

  • Bruneau, C.-H., Mortazavi, I.: Passive control of the flow around a square cylinder using porous media. Int. J. Numer. Methods Fluids 46, 415–433 (2004)

    Article  Google Scholar 

  • Bruneau, C.-H., Mortazavi, I.: Numerical modelling and passive flow control using porous media. Comput. Fluids 37(5), 488–498 (2008)

    Article  Google Scholar 

  • Caltagirone, J.-P.: Sur l’intéraction fluide-milieu poreux: application au calcul des efforts exercés sur un obstacle par un fluide visqueux. C. R. Acad. Sci. Paris 318, 571–577 (1994)

    Google Scholar 

  • Carbou, G., Fabrie, P.: Boundary layer for a penalization method for viscous incompressible flow. Adv. Differ. Equ. 8(12), 1453–1480 (2003)

    MathSciNet  Google Scholar 

  • Castro, I.P.: Wake characteristics of two-dimensional perforated plates normal to an air-stream. J. Fluid Mech. 46(3), 599–609 (1971)

    Article  Google Scholar 

  • Ciuti, M., Zampogna, G.A., Gallaire, F., Camarri, S., Ledda, P.-G.: On the effect of a penetrating recirculation region on the bifurcations of the flow past a permeable sphere. Phys. Fluids 33(12), 124103 (2021)

    Article  Google Scholar 

  • Cummins, C., Viola, I.M., Mastropaolo, E., Nakayama, N.: The effect of permeability on the flow past permeable disks at low Reynolds numbers. Phys. Fluids 29(9), 097103 (2017)

    Article  Google Scholar 

  • Fabre, D., Auguste, F., Magnaudet, J.: Bifurcations and symmetry breaking in the wake of axisymmetric bodies. Phys. Fluids 20, 1–4 (2008)

    Article  Google Scholar 

  • Ginzburg, I.: Consistent lattice Boltzmann schemes for the Brinkman model of porous flow and infinite Chapman–Enskog expansion. Phys. Rev. E 77(6), 066704 (2008)

    Article  Google Scholar 

  • Goldburg, A., Florsheim, B.H.: Transition and Strouhal number for the incompressible wake of various bodies. Phys. Fluids 9, 45–50 (1966)

    Article  Google Scholar 

  • Gray, W.G., O’Neill, K.: On the general equations for flow in porous media and their reduction to Darcy’s law. Water Resour. Res. 12(2), 148–154 (1976)

    Article  Google Scholar 

  • Guo, Z., Zhao, T.S.: Lattice Boltzmann model for incompressible flows through porous media. Phys. Rev. E 66(3), 036304 (2002)

    Article  Google Scholar 

  • Guo, Z., Zheng, C., Shi, B.: Discrete lattice effects on the forcing term in the lattice Boltzmann method. Phys. Rev. E 65, 046308 (2002)

    Article  Google Scholar 

  • Kevlahan, N.K.-R., Ghidaglia, J.-M.: Computation of turbulent flow past an array of cylinders using a spectral method with Brinkman penalization. Eur. J. Mech. B Fluids 20(3), 333–350 (2001)

    Article  Google Scholar 

  • Kim, D., Choi, H.: Laminar flow past a hemisphere. Phys. Fluids 15(8), 2457 (2003)

    Article  Google Scholar 

  • Koponen, A., Kataja, M., Timonen, J.: Permeability and effective porosity of porous media. Phys. Rev. E 56(3), 3319–3325 (1997). https://doi.org/10.1103/physreve.56.3319

    Article  Google Scholar 

  • Lācis, U., Bagheri, S.: A framework for computing effective boundary conditions at the interface between free fluid and a porous medium. J. Fluid Mech. 812, 866–889 (2017)

    Article  MathSciNet  Google Scholar 

  • Le Bars, M., Worster, M.G.: Interfacial conditions between a pure fluid and a porous medium: implications for binary alloy solidification. J. Fluid Mech. 550, 149–173 (2006)

    Article  MathSciNet  Google Scholar 

  • Ledda, P.G., Siconolfi, L., Viola, F., Gallaire, F., Camarri, S.: Suppression of von Kármán vortex streets past porous rectangular cylinders. Phys. Rev. Fluids 3(10), 103901 (2018)

    Article  Google Scholar 

  • Lemke, M., Reiss, J.: Approximate acoustic boundary conditions in the time-domain using volume penalization. J. Acoust. Soc. Am. 153(2), 1219–1228 (2023)

    Article  Google Scholar 

  • Liu, S., Masliyah, J.H.: Dispersion in porous media. In: Vafai, K. (ed.) Handbook of Porous Media, pp. 81–140. Taylor & Francis, Boca Raton (2005)

    Google Scholar 

  • Marié, S., Ricot, D., Sagaut, P.: Comparison between Lattice Boltzmann Method and Navier–Stokes high order schemes for computational aeroacoustics. J. Comput. Phys. 228, 1056–1070 (2009)

    Article  MathSciNet  Google Scholar 

  • Martys, N.S.: Improved approximation of the Brinkman equation using a lattice Boltzmann method. Phys. Fluids 13(6), 1807–1810 (2001)

    Article  Google Scholar 

  • Mimeau, C., Gallizio, F., Cottet, G.-H., Mortazavi, I.: Vortex penalization method for bluff body flows. Int. J. Numer. Meth. Fluids 79, 306–336 (2015)

    Article  MathSciNet  Google Scholar 

  • Mimeau, C., Cottet, G.-H., Mortazavi, I.: Direct numerical simulations of three-dimensional flows past obstacles with a Vortex penalization method. Comput. Fluids 136, 331–347 (2016)

    Article  MathSciNet  Google Scholar 

  • Mimeau, C., Mortazavi, I., Cottet, G.-H.: Passive control of the flow around a hemisphere using porous media. Eur. J. Mech. B Fluids 65, 213–226 (2017)

    Article  MathSciNet  Google Scholar 

  • Mimeau, C., Marié, S., Mortazavi, I.: A comparison of semi-Lagrangian vortex method and lattice Boltzmann method for incompressible flows. Comput. Fluids 224, 104946 (2021)

    Article  MathSciNet  Google Scholar 

  • Monkewitz, P.A.: The absolute and convective nature of instability in two-dimensional wakes at low Reynolds numbers. Phys. Fluids 31(5), 999–1006 (1988)

    Article  Google Scholar 

  • Nield, D.A., Bejan, A.: Convection in Porous Media, vol. 3. Springer, New York (2006)

    Google Scholar 

  • Ochoa-Tapia, J.A., Whitaker, S.: Momentum transfer at the boundary between a porous medium and a homogeneous fluid-I. Theoretical development. Int. J. Heat Mass Transf. 38(14), 2635–2646 (1995)

    Article  Google Scholar 

  • Pepona, M., Favier, J.: A coupled immersed boundary–Lattice Boltzmann method for incompressible flows through moving porous media. J. Comput. Phys. 321, 1170–1184 (2016). https://doi.org/10.1016/j.jcp.2016.06.026

    Article  MathSciNet  Google Scholar 

  • Pluvinage, F., Kourta, A., Bottaro, A.: Instabilities in the boundary layer over a permeable, compliant wall. Phys. Fluids 26(8), 084103 (2014)

    Article  Google Scholar 

  • Qian, Y.-H., d’Humières, D., Lallemand, P.: Lattice BGK models for Navier–Stokes equation. Europhys. Lett. 17, 479–484 (1992)

    Article  Google Scholar 

  • Ruck, B., Klausmann, K., Wacker, T.: The flow around circular cylinders partially coated with porous media. In: AIP Conference Proceedings 4, vol. 1453, pp. 49–54. American Institute of Physics (2012)

  • Rui, D., Shi, B.: Incompressible multi-relaxation-time lattice Boltzmann model in 3-d space. J. Hydrodyn. Ser. B 22(6), 782–787 (2010)

    Article  Google Scholar 

  • Sansica, A., Robinet, J.-C., Alizard, F., Goncalves, E.: Three-dimensional instability of a flow past a sphere: Mach evolution of the regular and Hopf bifurcations. J. Fluid Mech. 855, 1088–1115 (2018)

    Article  MathSciNet  Google Scholar 

  • Schlichting, H.: Boundary Layer Theory, vol. 716, 7th edn. McGraw-Hill, New York (1979)

    Google Scholar 

  • Slattery, J.C.: Flow of viscoelastic fluids through porous media. AIChE J. 13(6), 1066–1071 (1967)

    Article  Google Scholar 

  • Spaid, M.A.A., Phelan, F.R.: Lattice Boltzmann methods for modeling microscale flow in fibrous porous media. Phys. Fluids 9(9), 2468–2474 (1997)

    Article  MathSciNet  Google Scholar 

  • Suss, A., Mary, I., Le Garrec, T., Marié, S.: Comprehensive comparison between the lattice Boltzmann and Navier–Stokes methods for aerodynamic and aeroacoustic applications. Comput. Fluids 257, 105881 (2023)

    Article  MathSciNet  Google Scholar 

  • Tam, C.K.: The drag on a cloud of spherical particles in low Reynolds number flow. J. Fluid Mech. 38(3), 537–546 (1969)

    Article  Google Scholar 

  • Ueda, Y., Kida, T.: Asymptotic analysis of initial flow around an impulsively started circular cylinder using a Brinkman penalization method. J. Fluid Mech. 929, 31 (2021)

    Article  MathSciNet  Google Scholar 

  • Vienne, L., Marié, S.: Lattice Boltzmann study of miscible viscous fingering for binary and ternary mixtures. Phys. Rev. Fluids 6(5), 053904 (2021)

    Article  Google Scholar 

  • Wagner, H., Weger, M., Klaas, M., Schröder, W.: Features of owl wings that promote silent flight. Interface Focus 7(1), 20160078 (2017)

    Article  Google Scholar 

  • Whitaker, S.: Advances in theory of fluid motion in porous media. Ind. Eng. Chem. 61(12), 14–28 (1969)

    Article  Google Scholar 

  • Yaginuma, T., Hidesato, I.: Drag and wakes of freely falling 60\(^{\circ }\) cones at intermediate Reynolds numbers. Phys. Fluids 20, 117102 (2008)

    Article  Google Scholar 

  • Yu, P., Zeng, Y., Lee, T.S., Bai, H.X., Low, H.T.: Wake structure for flow past and through a porous square cylinder. Int. J. Heat Fluid Flow 31(2), 141–153 (2010)

    Article  Google Scholar 

  • Yu, P., Zeng, Y., Lee, T.S., Chen, X.B., Low, H.T.: Steady flow around and through a permeable circular cylinder. Comput Fluids 42(1), 1–12 (2011)

    Article  Google Scholar 

  • Zampogna, G.A., Bottaro, A.: Fluid flow over and through a regular bundle of rigid fibres. J. Fluid Mech. 792, 5–35 (2016)

    Article  MathSciNet  Google Scholar 

  • Zampogna, G.A., Pluvinage, F., Kourta, A., Bottaro, A.: Instability of canopy flows. Water Resour. Res. 52(7), 5421–5432 (2016)

    Article  Google Scholar 

  • Zou, Q., He, X.: On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys. Fluids 9(6), 1591–1598 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Most of this work was performed using HPC resources from IDRIS Jean Zay (Grants 2021-A0112A10636 and 2022-A013A10636). The authors would like to thank M. Rafik Abdesselam for providing them the JupyterHUB-Cnam server access for efficient and shared post-processing.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by CM, SM and LR. The first draft of the manuscript was written by CM and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. Conceptualization: CM, SM and IM; Methodology: CM, SM and IM; Formal analysis and investigation: CM and SM; Numerical simulations: SM, LR and CM.

Corresponding author

Correspondence to Mimeau Chloé.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix 1: Validation of the LBM Results for the Sphere Case at \(Re=300\) with Respect to Another Numerical Method: The Semi-Lagrangian Vortex Method

Appendix 1: Validation of the LBM Results for the Sphere Case at \(Re=300\) with Respect to Another Numerical Method: The Semi-Lagrangian Vortex Method

1.1 Implementation of the Brinkman Penalization Technique in the Semi-Lagrangian Vortex Method Framework

In the semi-Lagrangian Vortex Method (denoted as “VM” in the sequel), one solves the incompressible Navier–Stokes equations in their adimensionalized velocity(\({\textbf{u}}\))—vorticity(\({\varvec{\omega }}\)) formulation. Adding the Brinkman penalization forcing term in these equations gives the so-called penalized vorticity-transport-equation (Kevlahan and Ghidaglia 2001):

$$\begin{aligned} \dfrac{\partial {\varvec{\omega }}}{\partial t} +({\textbf{u}}\cdot \nabla ) {\varvec{\omega }}-({\varvec{\omega }}\cdot \nabla ) {\textbf{u}}=\frac{1}{Re} \Delta {\varvec{\omega }}-\nabla \times {\textbf{F}}_{\textbf{p}}&\qquad {\text{in}} \ \Omega \times (0,t) \end{aligned}$$
(29)
$$\begin{aligned} \Delta {\textbf{u}}= -\nabla \times {\varvec{\omega }}&\qquad {\text{in}} \ \Omega \times (0,t), \end{aligned}$$
(30)

In the present VM framework, the system of equations (29)–(30) is solved with a fractional step technique (where the diffusive, convective and stretching effects are handled successively within one time step) and by using a semi-Lagrangian approach where the convection of the vorticity field is performed in a Lagrangian way and all the other substeps are resolved on a grid using classical Eulerian schemes (finite differences, spectral) thanks to the regular remeshing of the Lagrangian particles on the grid. The reader is referred to Mimeau et al. (2016) for more details.

The resolution of the penalization equation \(\partial _{t} {\varvec{\omega }}= - \nabla \times {{\textbf{F}}_{\textbf{p}}} = - \nabla \times (\lambda \chi {\textbf{u}})\) is one of the fractional step of the global algorithm, and such equation is solved on the grid with an implicit Euler scheme for time integration (with time step \(\Delta t\)) and a finite differences scheme for the discretization of the curl operator. The conservative formulation of the scheme allowing to update the discrete penalized vorticity therefore writes:

$$\begin{aligned} {\varvec{\omega }}^{n+1} = {\varvec{\omega }}^{n} + \nabla \times \left( \dfrac{-\lambda \chi \Delta t \ {\textbf{u}}^{n}}{1 + \lambda \chi \Delta t} \right) \end{aligned}$$
(31)

1.2 Comparison Between LBM and VM Results

This section aims at comparing the Brinkman-penalization-LBM results presented in this paper to the one obtained with the VM framework described above. One recalls that the LBM and VM implementations are completely independent one from the other and come from two distinct solvers. In absence of validation results in literature to confront the present LBM results with (e.g. the unsteady flow past a porous sphere at \(Re=300)\), the VM outcomes are employed here to reinforce their robustness. The computational setup in the VM framework is exactly the same as in the LBM one (Figs. 18 and 19).

Fig. 18
figure 18

Flow past a porous sphere at \(Re=300\). Comparison of the Da number influence on the kinetic energy between the VM and LBM algorithms

Fig. 19
figure 19

Flow past a porous sphere at \(Re=300\). Influence of the Da number on the zero-level contours of the mean streamwise velocity \({\overline{u}}_{x}\) (computed on the \(t^{*} \in [50, 125]\) time-range). Comparison between LBM (top row) and VM (bottom row) approaches. (Note: the slight discrepancy of the VM contour with respect to the LBM one at \(Da=10^{-3}\) in the XY plane may be explained by the different behaviors of the VM and mean solutions on the chosen time window (cf Fig. 18): on the \(t^{*} \in [50, 125]\) time-range, the LBM mean solution covers exactly two periods starting from the lowest energy state, which is not the case for the VM solution on the same time-range, explaining the slight shift of the mean VM contour under the plane-symmetry axis)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chloé, M., Simon, M., Léo, R. et al. Wake Prediction in 3D Porous–Fluid Flows: A Numerical Study Using a Brinkman Penalization LBM Approach. Flow Turbulence Combust 112, 273–301 (2024). https://doi.org/10.1007/s10494-023-00471-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-023-00471-w

Keywords

Navigation