Skip to main content

Dissipation Rate Estimation in a Highly Turbulent Isotropic Flow Using 2D-PIV

Abstract

In experimental turbulent flows, the estimation of the dissipation rate of turbulent kinetic energy, \(\varepsilon\), is a challenge. The dimensional analysis approach is the simplest of the many available strategies, where \(\varepsilon = C_{\varepsilon} k^{3/2}/L\). Although the proportionality constant, \(C_{\varepsilon}\), is commonly stated to be on the order of unity, there is little experimental evidence to verify this claim for zero-mean stirred-chamber configurations in general, nor is there detailed information on how \(C_{\varepsilon}\) might systematically vary with flow conditions. Given the importance of zero-mean chambers for both practical and fundamental studies on turbulent flows, reliable data on the magnitude of \(C_{\varepsilon}\) would be an asset. The goal of the present investigation is to rigorously determine \(\varepsilon\) in turbulent helium gas using medium-resolution particle image velocimetry (PIV) combined with the corrected spatial gradient method—these results lead directly to \(C_{\varepsilon}\). Helium maintains relatively large Kolmogorov length scales, \(\eta\), due to its high kinematic viscosity, making it possible to resolve spatial velocity gradients in strongly turbulent fields (\(k \le {17.6}\,\hbox {m}^{2}\,\hbox{s}^{-2}\)) with only modest magnification while avoiding many of the difficulties associated with micro-PIV. The results confirm that the vector spacing, \(\varDelta x\), must be less than \(\eta\) to properly calculate the spatial velocity gradients—a recommendation that has not been universally agreed upon. We provide comprehensive \(C_{\varepsilon}\) results up to \(Re_\lambda = 220\) by varying the fan speed, fan count, and chamber pressure. \(C_{\varepsilon}\) eventually falls to a value of \({\sim }0.5\), although the true asymptotic value of \(C_{\varepsilon}\)—if it exists—remains elusive.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  • Adrian, R., Westerweel, J.: Particle Image Velocimetry. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  • Baldi, S., Yianneskis, M.: On the direct measurement of turbulence energy dissipation in stirred vessels with PIV. Ind. Eng. Chem. Res. 42(26), 7006–7016 (2003)

    Article  Google Scholar 

  • Baldi, S., Yianneskis, M.: On the quantification of energy dissipation in the impeller stream of a stirred vessel from fluctuating velocity gradient measurements. Chem. Eng. Sci. 59, 2659–2671 (2004)

    Article  Google Scholar 

  • Bertens, G., van der Voort, D., Bocanegra-Evans, H., van de Water, W.: Large-eddy estimate of the turbulent dissipation rate using PIV. Exp. Fluids 56(5), 89 (2015)

  • Borisenkov, Y., Gulitski, G., Kholmyansky, M., Krylov, S., Liberzon, A., Tsinober, A.: Micro-machined super-miniature hot-film multi-array probe for field experiments with sub-kolmogorov resolution. J. Turbul. 16(6), 525–539 (2015)

    Article  Google Scholar 

  • Bradley, D., Lawes, M., Morsy, M.E.: Measurement of turbulence characteristics in a large scale fan-stirred spherical vessel. J. Turbul. 20(3), 195–213 (2019)

    MathSciNet  Article  Google Scholar 

  • Burattini, P., Lavoie, P., Antonia, R.A.: On the normalized turbulent energy dissipation rate. Phys. Fluids 17, 098103 (2005)

    MathSciNet  Article  Google Scholar 

  • Buxton, O., Laizet, S., Ganapathisubramani, B.: The effects of resolution and noise on kinematic features of fine-scale turbulence. Exp. Fluids 51, 1417–1437 (2011)

    Article  Google Scholar 

  • Cadot, O., Couder, Y., Daerr, A., Douady, S., Tsinober, A.: Energy injection in closed turbulent flows: stirring through boundary layers versus inertial stirring. Phys. Rev. E 56(1), 427–433 (1997)

    Article  Google Scholar 

  • Cardesa, J., Nickels, T., Dawson, J.: 2D PIV measurements in the near field of grid turbulence using stitched fields from multiple cameras. Exp. Fluids 52, 1611–1627 (2012)

    Article  Google Scholar 

  • Casarsa, L., Giannattasio, P.: Three-dimensional features of the turbulent flow through a planar sudden expansion. Phys. Fluids 20, 015103 (2008)

    Article  Google Scholar 

  • Chen, J., Zhou, Y., Antonia, R., Zhou, T.: Characteristics of the turbulent energy dissipation rate in a cylinder wake. J. Fluid Mech. 835, 271–300 (2018)

    MathSciNet  Article  Google Scholar 

  • de Jong, J., Cao, L., Woodward, S., Salazar, J., Collins, L., Meng, H.: Dissipation rate estimation from PIV in zero-mean isotropic turbulence. Exp. Fluids 46(3), 499–515 (2009)

    Article  Google Scholar 

  • Delafosse, A., Collignon, M.L., Crine, M., Toye, D.: Estimation of the turbulent kinetic energy dissipation rate from 2D-PIV measurements in a vessel stirred by an axial Mixel TTP impeller. Chem. Eng. Sci. 66, 1728–1737 (2011)

    Article  Google Scholar 

  • Gabriele, A., Nienow, A., Simmons, M.: Use of angle resolved PIV to estimate local specific energy dissipation rates for up- and down-pumping pitched blade agitators in a stirred tank. Chem. Eng. Sci. 64(1), 126–143 (2009)

    Article  Google Scholar 

  • Galmiche, B., Mazellier, N., Halter, F., Foucher, F.: Turbulence characterization of a high-pressure high-temperature fan-stirred combustion vessel using LDV. PIV and TR-PIV measurements. Exp. Fluids 55, 1636 (2014)

    Article  Google Scholar 

  • Gomes-Fernandes, R., Ganapathisubramani, B., Vassilicos, J.: Particle image velocimetry study of fractal-generated turbulence. J. Fluid Mech. 711, 306–336 (2012)

    Article  Google Scholar 

  • Goulier, J., Comandini, A., Halter, F., Chaumeix, N.: Experimental study on turbulent expanding flames of lean hydrogen/air mixtures. Proc. Combust. Inst. 36, 2823–2832 (2017)

    Article  Google Scholar 

  • Hoque, M.M., Sathe, M.J., Mitra, S., Joshi, J.B., Evans, G.M.: Comparison of specific energy dissipation rate calculation methodologies utilising 2D PIV velocity measurement. Chem. Eng. Sci. 137, 752–767 (2015)

    Article  Google Scholar 

  • Huchet, F., Liné, A., Morchain, J.: Evaluation of local kinetic energy dissipation rate in the impeller stream of a Rushton turbine by time-resolved PIV. Chem. Eng. Res. Des. 87, 369–376 (2009)

    Article  Google Scholar 

  • Krawczynski, J.F., Renou, B., Danaila, L.: The structure of the velocity field in a confined flow driven by an array of opposed jets. Phys. Fluids 22, 045104 (2010)

    Article  Google Scholar 

  • Lavoie, P., Avallone, G., De Gregorio, F., Romano, G., Antonia, R.: Spatial resolution of PIV for the measurement of turbulence. Exp. Fluids 43, 39–51 (2007)

    Article  Google Scholar 

  • Piirto, M., Saarenrinne, P., Eloranta, H., Karvinen, R.: Measuring turbulence energy with PIV in a backward-facing step flow. Exp. Fluids 35, 219–236 (2003)

    Article  Google Scholar 

  • Racina, A., Kind, M.: Specific power input and local micromixing times in turbulent Taylor-Couette flow. Exp. Fluids 41, 513–522 (2006)

    Article  Google Scholar 

  • Raffel, M., Willert, C., Wereley, S., Kompenhans, J.: Particle Image Velocimetry: A Practical Guide, 2nd edn. Springer, New York (2007)

    Book  Google Scholar 

  • Saarenrinne, P., Piirto, M.: Turbulent kinetic energy dissipation rate estimation from PIV velocity vector fields. Exp. Fluids 29(1), S300–S307 (2000)

    Article  Google Scholar 

  • Sabban, L., Cohen, A., van Hout, R.: Temporally resolved measurements of heavy, rigid fibre translation and rotation in nearly homogeneous isotropic turbulence. J. Fluid Mech. 814, 42–68 (2017)

    MathSciNet  Article  Google Scholar 

  • Sciacchitano, A., Wieneke, B.: PIV uncertainty propagation. Meas. Sci. Technol. 27, 084006 (2016)

    Article  Google Scholar 

  • Seoud, R., Vassilicos, J.: Dissipation and decay of fractal-generated turbulence. Phys. Fluids 19, 105108 (2007)

    Article  Google Scholar 

  • Sharman, R., Cornman, L., Meymaris, G., Pearson, J., Farrar, T.: Description and derived climatologies of automated in situ eddy-dissipation-rate reports of atmospheric turbulence. J. Appl. Meteorol. Climatol. 53(6), 1416–1432 (2014)

    Article  Google Scholar 

  • Sharp, K., Adrian, R.: PIV study of small-scale flow structure around a Rushton turbine. AIChE J. 47(4), 766–778 (2001)

    Article  Google Scholar 

  • Sheng, J., Meng, H., Fox, R.: A large eddy PIV method for turbulence dissipation rate estimation. Chem. Eng. Sci. 55, 4423–4434 (2000)

    Article  Google Scholar 

  • Tanaka, T., Eaton, J.: A correction method for measuring turbulence kinetic energy dissipation rate by PIV. Exp. Fluids 42(6), 893–902 (2007)

    Article  Google Scholar 

  • Tanaka, T., Eaton, J.K.: Sub-Kolmogorov resolution partical image velocimetry measurements of particle-laden forced turbulence. J. Fluid Mech. 643, 177–206 (2010)

    Article  Google Scholar 

  • Variano, E., Cowen, E.: A random-jet-stirred turbulence tank. J. Fluid Mech. 604, 1–32 (2008)

    Article  Google Scholar 

  • Vassilicos, J.: Dissipation in turbulent flows. Annu. Rev. Fluid Mech. 47, 95–114 (2015)

    MathSciNet  Article  Google Scholar 

  • Wang, G., Yang, F., Wu, K., Ma, Y., Peng, C., Liu, T., Wang, L.P.: Estimation of the dissipation rate of turbulent kinetic energy: A review. Chem. Eng. Sci. 229, 116133 (2021)

    Article  Google Scholar 

  • White, C., Karpetis, A., Sreenivasan, K.: High-Reynolds-number turbulence in small apparatus: grid turbulence in cryogenic liquids. J. Fluid Mech. 452, 189–197 (2002)

    Article  Google Scholar 

  • Xu, D., Chen, J.: Accurate estimate of turbulent dissipation rate using PIV data. Exp. Therm. Fluid. Sci. 44, 662–672 (2013)

    Article  Google Scholar 

  • Zhou, G., Kresta, S.: Correlation of mean drop size and minimum drop size with the turbulence energy dissipation and the flow in an agitated tank. Chem. Eng. Sci. 53(11), 2063–2079 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madjid Birouk.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Verwey, C., Birouk, M. Dissipation Rate Estimation in a Highly Turbulent Isotropic Flow Using 2D-PIV. Flow Turbulence Combust 109, 647–665 (2022). https://doi.org/10.1007/s10494-022-00343-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-022-00343-9

Keywords

  • Turbulence
  • Dissipation
  • Particle image velocimetry
  • Isotropy