Skip to main content
Log in

Pressure Improvement on a Supercritical High-Lift Wing Using Simple and Modulated Pulse Jet Vortex Generator

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

In this paper, an experimental study, aimed at delaying flow separation on a high-lift device using a pulsed blowing excitation method, is reported. The main objective of this investigation was to evaluate a new pulsed jet generation strategy to enhance flow control performance. In these experiments, two types of signal waveform were implemented to produce the unsteady blowing; a simple square-wave excitation signal for the first case, and a burst modulated excitation signal for the second case. The signal modulation was the first time to be used for a fast-switching solenoid valve actuator. Another objective of this study was to evaluate a new arrangement of the jet exit slots, in the form of a vortex generator which was employed for the first time on the high-lift device. For this purpose, a NASA SC(2)-0714 airfoil with a single slotted flap was employed. The vortex generator jets emanated from the shoulder of the trailing-edge flap with excitation frequencies from 40 to 1000 Hz. Pressure distribution around the model and wake total pressure deficit were measured. The results indicated that ejection from vortex generator slot pairs was able to prevent flow separation completely in most conditions. These measurements revealed that the burst modulated excitation signal was accompanied by more aerodynamic improvements and less air consumption relative to the simple pulsed jet excitation signal. In the best flow control mode, the results showed about a 53% increase in the value of the suction pressure peak on the flap and a 38% decrease in drag with a reduction in total pressure loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Abbreviations

A :

Exit area of the slot pair (m2)

C ref. :

Clean cruise chord length (m)

C flap :

Flap chord length (m)

C p :

Pressure coefficient

C μ :

Excitation momentum coefficient

DC:

Duty cycle

f :

Excitation frequency (Hz)

f m :

Modulating frequency (Hz)

f c :

Carrier frequency (Hz)

F + :

Nondimensional frequency, F+ = f Lf/V

F m + :

Nondimensional modulating frequency, F+ = fm Lf/V

F c + :

Nondimensional carrier frequency, F+ = fc Lf/V

k :

Number of active actuators or number of slot pairs

L :

Length scale of the flow domain (m)

L f :

Length of flap chord (m)

l :

Length of actuator slot (m)

MPJ:

Modulated pulse jet

N:

Number of hot-wire samples in each position

\(q\) :

Dynamic pressure (\(q=\frac{1}{2}\rho {V}^{2}\))

\(\dot{q}\) :

Volume flow rate (m3/s)

S :

Planform area of flap (m2)

SPJ:

Simple pulsed jet

U i :

Instantaneous velocity (m/s)

U c :

Mean centerline velocity of the jet (m/s)

U exit :

Mean centerline velocity at the jet exit (m/s)

u rms :

RMS of jet centerline velocity fluctuations (m/s)

V :

Freestream velocity (m/s)

w :

Length of the wake rake (m)

x/D :

Nondimensional downstream centerline distance from jet exit

x/c flap :

Nondimensional length of flap chord

x/c ref. :

Nondimensional length of the model chord

α :

Angle of attack (°)

∆P Total :

Total pressure loss (pa)

References

  • Abdolahipour, S., Mani, M., Taleghani, A.S.: Parametric study of a frequency-modulated pulse jet by measurements of flow characteristics. Phys. Scr. 96(12), 12–5012 (2021)

    Article  Google Scholar 

  • Abdolahipour, S., Mani, M., Taleghani, A.S.: Enhancing the high-lift properties of a supercritical wing by means of a modulated pulse jet actuator. Tech. Phys. Lett. (2022). https://doi.org/10.21883/PJTF.2022.01.51869.18999

    Article  Google Scholar 

  • Aley, K., Guha, T.K., Kumar, R.: Experimental characterization of a high-lift supercritical airfoil with microjets. In: 2018 flow control conference (p. 3688) (2018).

  • Aley, K., Guha, T.K., Kumar, R.: Active flow control of a high-lift supercritical airfoil with microjet actuators. AIAA J. 58(5), 2053–2069 (2020)

    Article  Google Scholar 

  • Amitay, M., Glezer, A.: Role of actuation frequency in controlled flow reattachment over a stalled airfoil. AIAA J. 40(2), 209–216 (2002a)

    Article  Google Scholar 

  • Amitay, M., Glezer, A.: Controlled transients of flow reattachment over stalled airfoils. Int. J. Heat Fluid Flow 23(5), 690–699 (2002b)

    Article  Google Scholar 

  • Amitay, M., Smith, D.R., Kibens, V., Parekh, D.E., Glezer, A.: Aerodynamic flow control over an unconventional airfoil using synthetic jet actuators. AIAA J. 39(3), 361–370 (2001)

    Article  Google Scholar 

  • Bauer, M., Lohse, J., Haucke, F., Nitsche, W.: High-lift performance investigation of a two-element configuration with a two-stage actuator system. AIAA J. 52(6), 1307–1313 (2014)

    Article  Google Scholar 

  • Benard, N., Moreau, E.: Capabilities of the dielectric barrier discharge plasma actuator for multi-frequency excitations. J. Phys. D 43(14), 145–201 (2010)

    Article  Google Scholar 

  • Benard, N., Moreau, E.: Response of a circular cylinder wake to a symmetric actuation by non-thermal plasma discharges. Exp. Fluids 54(2), 1467 (2013)

    Article  Google Scholar 

  • Benard, N., Pons-Prats, J., Periaux, J., Bugeda, G., Braud, P., Bonnet, J.P., Moreau, E.: Turbulent separated shear flow control by surface plasma actuator: experimental optimization by genetic algorithm approach. Exp. Fluids 57(2), 22 (2016)

    Article  Google Scholar 

  • Bernardini, C., Benton, S.I., Chen, J.P., Bons, J.P.: Pulsed jets laminar separation control using instability exploitation. AIAA J. 52(1), 104–115 (2014)

    Article  Google Scholar 

  • Cai, Z., Chen, P., Angland, D., Zhang, X.: Active flow separation control by a positional based iterative learning control with experimental validation. Int. J. Control 87(3), 633–641 (2013a)

    Article  MATH  Google Scholar 

  • Cai, Z., Chen, P., Angland, D., Zhang, X.: A position based iterative learning control applied to active flow control. In: American control conference, IEEE, NJ, 5184–5189 (2013b)

  • Cai, Z., Angland, D., Zhang, X., Chen, P.: Iterative learning control for trailing-edge flap lift enhancement with pulsed blowing. AIAA J. 53(7), 1969–1979 (2015)

    Article  Google Scholar 

  • Çetin, C., Çelik, A., Yavuz, M.M.: Control of flow structure over a nonslender delta wing using periodic blowing. AIAA J. 56(1), 90–99 (2018)

    Article  Google Scholar 

  • Choutapalli, I., Krothapalli, A., Arakeri, J.H.: An experimental study of an axisymmetric turbulent pulsed air jet. J. Fluid Mech. 631, 23 (2009)

    Article  MATH  Google Scholar 

  • Ciobaca, V., Wild, J.: An overview of recent DLR contributions on active flow-separation control studies for high-lift configurations. AerospaceLab 6, 1 (2013)

    Google Scholar 

  • Ciobaca, V., Kühn, T., Rudnik, R., Bauer, M., Gölling, B., Breitenstein, W.: Active flow-separation control on a high-lift wing-body configuration. J. Aircr. 50(1), 56–72 (2013)

    Article  Google Scholar 

  • Corke, T.C.: Design of Aircraft. Prentice Hall, Upper Saddle River (2003)

    Google Scholar 

  • Darabi, A. and Wygnanski, I., 2004. Active management of naturally separated flow over a solid surface. Part 1. The forced reattachment process. J. Fluid Mech. 510, 105

  • Dhakal, S., Yang, Y., Zha, G., Boling, J.: Numerical investigation of low speed performance of transonic coflow jet airfoil. In: 35th AIAA applied aerodynamics conference (p. 3249) (2017)

  • Eroglu, A., Breidenthal, R.E.: Structure, penetration, and mixing of pulsed jets in crossflow. AIAA J. 39(3), 417–423 (2001)

    Article  Google Scholar 

  • Feero, M.A.: Investigation of synthetic jet flow control parameters for the mitigation of laminar boundary layer separation, Doctoral dissertation, University of Toronto (2018)

  • Feero, M.A., Goodfellow, S.D., Lavoie, P., Sullivan, P.E.: Flow reattachment using synthetic jet actuation on a low-Reynolds-number airfoil. AIAA J. 53(7), 2005–2014 (2015)

    Article  Google Scholar 

  • Feero, M.A., Lavoie, P., Sullivan, P.E.: Influence of synthetic jet location on active control of an airfoil at low Reynolds number. Exp. Fluids 58(8), 99 (2017)

    Article  Google Scholar 

  • Fiedler, H.E., Fernholz, H.H.: On management and control of turbulent shear flows. Prog. Aerosp. Sci. 27(4), 305–387 (1990)

    Article  MATH  Google Scholar 

  • Glezer, A.: Some aspects of aerodynamic flow control using synthetic-jet actuation. Philos. Trans. R. Soc. A 369(1940), 1476–1494 (2011)

    Article  Google Scholar 

  • Glezer, A., Amitay, M., Honohan, A.M.: Aspects of low-and high-frequency actuation for aerodynamic flow control. AIAA J. 43(7), 1501–1511 (2005)

    Article  Google Scholar 

  • Godard, G., Stanislas, M.: Control of a decelerating boundary layer. Part 1: optimization of passive vortex generators. Aerosp. Sci. Technol. 10(3), 181–191 (2006)

    Article  Google Scholar 

  • Godard, G., Stanislas, M.: Control of a decelerating boundary layer. Part 3: optimization of round jets vortex generators. Aerosp. Sci. Technol. 10(6), 455–464 (2006)

    Article  Google Scholar 

  • Godard, G., Foucaut, J.M., Stanislas, M.: Control of a decelerating boundary layer. Part 2: optimization of slotted jets vortex generators. Aerosp. Sci. Technol. 10(5), 394–400 (2006)

    Article  Google Scholar 

  • Greenblatt, D., Wygnanski, I.J.: The control of flow separation by periodic excitation. Prog. Aerosp. Sci. 36(7), 487–545 (2000)

    Article  Google Scholar 

  • Haucke, F., Bauer, M., Nitsche, W.: Combined active separation control on the leading-edge and on the trailing-edge flap of a slatless high-lift configuration. In: New results in numerical and experimental fluid mechanics X (pp. 215–225). Springer, Cham (2016)

  • Johari, H.: Scaling of fully pulsed jets in crossflow. AIAA J. 44(11), 2719–2725 (2006)

    Article  Google Scholar 

  • Johari, H., Pacheco-Tougas, M., Hermanson, J.C.: Penetration and mixing of fully modulated turbulent jets in crossflow. AIAA J. 37(7), 842–850 (1999)

    Article  Google Scholar 

  • Kölzsch, A.: Active flow control of delta wing leading-edge vortices (Doctoral dissertation, Technische Universität München) (2017)

  • Konstantinidis, E.: Active control of bluff-body flows using plasma actuators. In: Actuators (vol. 8, p. 66). Multidisciplinary digital publishing institute (2019)

  • Kostas, J., Foucaut, J.M., Stanislas, M.: The effects of pulse frequency and duty cycle on the skin friction downstream of pulsed jet vortex generators in an adverse pressure gradient turbulent boundary layer. Aerosp. Sci. Technol. 13(1), 36–48 (2009)

    Article  Google Scholar 

  • Marxen, O., Kotapati, R.B., Mittal, R., Zaki, T.: Stability analysis of separated flows subject to control by zero-net-mass-flux jet. Phys. Fluids 27(2), 024107 (2015)

    Article  Google Scholar 

  • McManus, K., Joshi, P., Legner, H. and Davis, S., 1995, June. Active control of aerodynamic stall using pulsed jet actuators. In Fluid Dynamics Conference (p. 2187).

  • Mirzaei, M., Taleghani, A.S., Shadaram, A.: Experimental study of vortex shedding control using plasma actuator. Appl. Mech. Mater. 186, 75–86 (2012)

    Article  Google Scholar 

  • Ortmanns, J., Kähler, C.J., Weg, B.: Investigation of pulsed actuators for active flow control using phase locked stereoscopic particle image velocimetry. In: International symposium on applications of laser techniques in fluid mechanics (vol 12) (2004)

  • Pauley, W.R., Eaton, J.K.: Experimental study of the development of longitudinal vortex pairs embedded in a turbulent boundary layer. AIAA J. 26(7), 816–823 (1988)

    Article  Google Scholar 

  • Petz, R., Nitsche, W.: Active separation control on the flap of a two-dimensional generic high-lift configuration. J. Aircr. 44(3), 865–874 (2007)

    Article  Google Scholar 

  • Radespiel, R., Burnazzi, M., Casper, M., Scholz, P.: Active flow control for high lift with steady blowing. Aeronaut. J. 120(1223), 171–200 (2016)

    Article  Google Scholar 

  • Rice, T.T., Taylor, K., Amitay, M.: Quantification of the S817 airfoil aerodynamic properties and their control using synthetic jet actuators. Wind Energy 21(10), 823–836 (2018)

    Article  Google Scholar 

  • Salmasi, A., Shadaram, A., Taleghani, A.S.: Effect of plasma actuator placement on the airfoil efficiency at poststall angles of attack. IEEE Trans. Plasma Sci. 41(10), 3079–3085 (2013)

    Article  Google Scholar 

  • Sato, M., Okada, K., Asada, K., Aono, H., Nonomura, T., Fujii, K.: Unified mechanisms for separation control around airfoil using plasma actuator with burst actuation over Reynolds number range of 103–106. Phys. Fluids 32(2), 025102 (2020)

    Article  Google Scholar 

  • Schlichting, H.: Boundary Layer Theory, 7th edn. McGraw-Hill, New York (1987)

    MATH  Google Scholar 

  • Scholz, P., Ortmanns, J., Kähler, C.J., Radespiel, R.: Performance optimization of jet actuator arrays for active flow control. In: CEAS/KATnet conference on key aerodynamic technologies, Bremen (pp. 20–22) (2005)

  • Scholz, P., Ortmanns, J., Kähler, C.J., Radespiel, R.: Influencing the mixing process in a turbulent boundary layer by pulsed jet actuators. In: New results in numerical and experimental fluid mechanics V (vol. 92, pp. 265–272). Springer, Berlin (2006)

  • Scholz, P., Casper, M., Ortmanns, J., Kähler, C.J., Radespiel, R.: Leading-edge separation control by means of pulsed vortex generator jets. AIAA J. 46(4), 837–846 (2008)

    Article  Google Scholar 

  • Seifert, A., Darabi, A., Wyganski, I.: Delay of airfoil stall by periodic excitation. J. Aircr. 33(4), 691–698 (1996)

    Article  Google Scholar 

  • Seifert, A., Greenblatt, D., Wygnanski, I.J.: Active separation control: an overview of Reynolds and Mach numbers effects. Aerosp. Sci. Technol. 8(7), 569–582 (2004)

    Article  Google Scholar 

  • Steinfurth, B., Haucke, F.: Coherent structures in the actively controlled wake of a high-lift configuration. AIAA J. 56(10), 3848–3856 (2018)

    Article  Google Scholar 

  • Taleghani, A.S., Shadaram, A., Mirzaei, M.: Effects of duty cycles of the plasma actuators on improvement of pressure distribution above a NLF0414 airfoil. IEEE Trans. Plasma Sci. 40(5), 1434–1440 (2012)

    Article  Google Scholar 

  • Taleghani, A.S., Shadaram, A., Mirzaei, M., Abdolahipour, S.: Parametric study of a plasma actuator at unsteady actuation by measurements of the induced flow velocity for flow control. J. Braz. Soc. Mech. Sci. Eng. 40(4), 173 (2018)

    Article  Google Scholar 

  • Tilmann, C.P., Langan, K.J., Betterton, J.G., Wilson, M.J.: Characterization of pulsed vortex generator jets for active flow control. Air Force Research Laboratory AFRL-VA-WP-TP-2003- 336, Wright-Patterson Air Force Base (2003)

  • Wang, L., Wong, C. W., Fu, X., Zhou, Y.: Influence of burst-modulated frequency on sawtooth DBD plasma actuator for flow separation control. In: 2018 AIAA aerospace sciences meeting (p. 1062) (2018)

  • Wu, W., Seo, J.H., Meneveau, C., Mittal, R. (2018). Response of a laminar separation bubble to forcing with zero-net mass flux jets. In: Proc. 2018 flow control conference, AIAA AVIATION Forum (AIAA 2018-4018)

  • Yarusevych, S., Kawall, J.G., Sullivan, P.E.: Airfoil performance at low Reynolds numbers in the presence of periodic disturbances (2006)

  • Zhang, X., Collins, M.W.: Measurements of a longitudinal vortex generated by a rectangular jet in a turbulent boundary layer. Phys. Fluids 9(6), 1665–1673 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Shams Taleghani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdolahipour, S., Mani, M. & Shams Taleghani, A. Pressure Improvement on a Supercritical High-Lift Wing Using Simple and Modulated Pulse Jet Vortex Generator. Flow Turbulence Combust 109, 65–100 (2022). https://doi.org/10.1007/s10494-022-00327-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-022-00327-9

Keywords

Navigation