Skip to main content

Advertisement

Log in

Effects of DC Electric Fields on Flickering and Acoustic Oscillations of an M-shape Premixed Flame

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

This paper reports on the effect of DC electric fields on the dynamics of a premixed methane-air laminar flame, in a buoyant environment. DC electric fields can be capable of affecting both the buoyancy-driven flickering oscillation of the flame and the response of the flame to acoustic modulation of the flow. We conduct fast visualization of the emission of excited methylidyne radicals (CH*), representing the heat release rate of the flame. Such visualizations are also synchronized with electric current and voltage measurements. We notice that the suppression of buoyancy-driven flickering oscillations can be obtained by applying sub-critical negative DC voltages. Moreover, the current measured in the inter-electrodes area is analyzed for positive and negative DC applied voltages and we find that this quantity cannot be used as a tracer of heat release rate in a configuration where the flame location in the inter-electrodes gap varies with sub-critical electric fields. In addition, the effect of DC electric fields on the flame transfer function for acoustic modulation of the flow is reported and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Altendorfner, F., Kuhl, J., Zigan, L., et al.: Study of the influence of electric fields on flames using planar LIF and PIV techniques. Proc. Combust. Inst. 33, 3195–3201 (2011)

    Article  Google Scholar 

  • Borgatelli, F., Dunn-Rankin, D.: Behavior of a small diffusion flame as an electrically active component in a high-voltage circuit. Combust. Flame 159, 210–220 (2012)

    Article  Google Scholar 

  • Davis, R.W., Moore, E.F., Chen, L.D., et al.: A numerical/experimental study of the dynamic structure of a buoyant jet diffusion flame. Theoret. Comput. Fluid Dyn. 6, 113–123 (1994)

    Article  MATH  Google Scholar 

  • Durox, D., Schuller, T., Noiray, N., et al.: Experimental analysis of nonlinear flame transfer functions for different flame geometries. Proceed. Combust. Inst. 32(I), 1391–1398 (2009)

    Article  Google Scholar 

  • Fialkov, A.B.: Investigations on ions in flames. Prog. Energy Combust. Sci. 23, 399–528 (1997)

    Article  Google Scholar 

  • Fleifil, M., Annaswamy, A.M., Ghoneim, Z.A., et al.: Response of a laminar premixed flame to flow oscillations: A kinematic model and thermoacoustic instability results. Combust. Flame 106, 487–510 (1996)

    Article  Google Scholar 

  • Fujisawa, N., Abe, T., Yamagata, T., et al.: Flickering characteristics and temperature field of premixed methane/air flame under the influence of co-flow. Energy Convers. Manage. 78, 374–385 (2014)

    Article  Google Scholar 

  • Gohari Darabkhani, H., Wang, Q., Chen, L., et al.: Impact of co-flow air on buoyant diffusion flames flicker. Energy Convers. Manage. 52, 2996–3003 (2011)

    Article  Google Scholar 

  • Hardalupas, Y., Orain, M.: Local measurements of the time-dependent heat release rate and equivalence ratio using chemiluminescent emission from a flame. Combust. Flame 139, 188–207 (2004)

    Article  Google Scholar 

  • Jiang, X., Luo, K.H.: Combustion-induced buoyancy effects of an axisymmetric reactive plume. Proc. Combust. Inst. 28, 1989–1995 (2000)

    Article  Google Scholar 

  • Karnani, S., Dunn-Rankin, D.: Detailed characterization of DC electric field effects on small non-premixed flames. Combust. Flame 162, 2865–2872 (2015)

    Article  Google Scholar 

  • Katta, V.R., Roquemore, W.M.: Role of inner and outer structures in transitional jet diffusion flame. Combust. Flame 92(3), 274–282 (1993)

    Article  Google Scholar 

  • Keller, J.J.: Thermoacoustic oscillations in combustion chambers of gas turbines. AIAA J. 33, 2280–2287 (1995)

    Article  MATH  Google Scholar 

  • Kuhl, J., Jovicic, G., Zigan, L., et al.: Influence of electric fields on premixed laminar flames: Visualization of perturbations and potential for suppression of thermoacoustic oscillations. Proc. Combust. Inst. 35, 3521–3528 (2015)

    Article  Google Scholar 

  • Lacoste, D.A., Xiong, Y., Moeck, J.P., et al.: Transfer functions of laminar premixed flames subjected to forcing by acoustic waves, AC electric fields, and non-thermal plasma discharges. Proc. Combust. Inst. 36, 4183–4192 (2017)

    Article  Google Scholar 

  • Lawton, J., Weinberg, F.J.: Electrical aspects of combustion. Clarendon Press 4, 296 (1976)

    Google Scholar 

  • Lee, S.M., Park, C.S., Cha, M.S., et al.: Effect of electric fields on the liftoff of nonpremixed turbulent jet flames. IEEE Trans. Plasma Sci. 33, 1703–1709 (2005)

    Article  Google Scholar 

  • Lieuwen, T.: Modeling premixed combustion-acoustic wave interactions: a review. J. Propulsion Power 19, 765–781 (2003)

    Article  Google Scholar 

  • Marcum, S.D., Ganguly, B.N.: Electric-field-induced flame speed modification. Combust. Flame 143, 27–36 (2005)

    Article  Google Scholar 

  • Park, D.G., Chung, S.H., Cha, M.S.: Visualization of ionic wind in laminar jet flames. Combust. Flame 184, 246–248 (2017)

    Article  Google Scholar 

  • Peerlings, L.B.W., Manohar, Kornilov, V.N. et al.: Flame ion generation rate as a measure of the flame thermo-acoustic response. Combustion and Flame, 160, 2490–2496 (2013)

  • Peeters, J., Vinckier, C., Tiggelen, A.V.: Formation and Behaviour of chemi-ions in flames. Oxidation and Combustion Reviews 4, 93–132 (1969)

    Google Scholar 

  • Ren, Y., Li, S., Cui, W., et al.: Low-frequency AC electric field induced thermoacoustic oscillation of a premixed stagnation flame. Combust. Flame 176, 479–488 (2017)

    Article  Google Scholar 

  • Sakhrieh, A., Lins, G., Dinkelacker, F., et al.: The influence of pressure on the control of premixed turbulent flames using an electric field. Combust. Flame 143, 313–322 (2005)

    Article  Google Scholar 

  • Schuller, T., Ducruix, S., Durox, D., et al.: Modeling tools for the prediction of premixed flame transfer functions. Proc. Combust. Inst. 29, 107–113 (2002)

    Article  Google Scholar 

  • Schuller, T., Durox, D., Candel, S.: A unified model for the prediction of laminar flame transfer functions: Comparisons between conical and V-flame dynamics. Combust. Flame 134, 21–34 (2003)

    Article  Google Scholar 

  • Sher, E., Pinhasi, G., Pokryvailo, A., et al.: Extinction of pool flames by means of a DC electric field. Combust. Flame 94, 244–252 (1993)

    Article  Google Scholar 

  • Speelman, N., Kiefer, M., Markus, D., Maas, U., De Goey, L.P.H., Van Oijen, J.A.: Validation of a novel numerical model for the electric currents in burner-stabilized methane–air flames. Proc. Combust. Inst. 35(1), 847–854 (2015a)

    Article  Google Scholar 

  • Speelman, N., De Goey, L.P.H., Van Oijen, J.A.: Development of a numerical model for the electric current in burner-stabilised methane–air flames. Combust. Theor. Model. 19(2), 27–36 (2015b)

    Article  MathSciNet  MATH  Google Scholar 

  • Tran, M.V., Cha, M.S.: Propagating nonpremixed edge-flames in a counterflow, annular slot burner under DC electric fields. Combust. Flame 173, 114–122 (2016)

    Article  Google Scholar 

  • Volkov, E.N., Kornilov, V.N., De Goey, L.P.H.: Experimental evaluation of DC electric field effect on the thermoacoustic behaviour of flat premixed flames. Proc. Combust. Inst. 34, 955–962 (2013)

    Article  Google Scholar 

  • Wang, Y., Nathan, G.J., Alwahabi, Z.T. et al.: Effect of a uniform electric field on laminar premixed ethylene/air flames, in 7th Asia-Pacific Conference on Combustion, ASPACC 2009 (2009)

  • Weinberg, F.J., Dunn-Rankin, D., Carleton, F.B., et al.: Electrical aspects of flame quenching. Proc. Combust. Inst. 34, 3295–3301 (2013)

    Article  Google Scholar 

  • Won, S.H., Ryu, S.K., Kim, M.K., et al.: Effect of electric fields on the propagation speed of tribrachial flames in coflow jets. Combust. Flame 152, 496–506 (2008)

    Article  Google Scholar 

  • Xiong, Y., Cha, M.S., Chung, S.H.: AC electric field induced vortex in laminar coflow diffusion flames. Proc. Combust. Inst. 35, 3513–3520 (2015)

    Article  Google Scholar 

  • Xiong, Y., Park, D.G., Lee, B.J., et al.: DC field response of one-dimensional flames using an ionized layer model. Combust. Flame 163, 317–325 (2016)

    Article  Google Scholar 

  • Xiong, Y., Chung, S.H., Cha, M.S.: Instability and electrical response of small laminar coflow diffusion flames under AC electric fields: Toroidal vortex formation and oscillating and spinning flames. Proc. Combust. Inst. 36, 1621–1628 (2017)

    Article  Google Scholar 

Download references

Funding

This work is supported by Center Competitive Funding from King Abdullah University of Science and Technology (KAUST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Xiong.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Ethical Approval

Not applicable.

Informed Consent

All the co-authors have been informed and all gave explicit consent to submit the paper. They also obtained consent from the responsible authorities at the institute/organization where the work has been carried out.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, Y., Lacoste, D.A., Chung, S.H. et al. Effects of DC Electric Fields on Flickering and Acoustic Oscillations of an M-shape Premixed Flame. Flow Turbulence Combust 109, 459–475 (2022). https://doi.org/10.1007/s10494-022-00326-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-022-00326-w

Keywords

Navigation