Skip to main content
Log in

Combustion of a Powder Layer of Methane Hydrate: The Influence of Layer Height and Air Velocity Above the Layer

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The paper studies the dissociation and combustion of a layer of methane hydrate powder at a forced air flow over the upper surface of the layer (the air velocity is directed parallel to the upper surface of the layer). The influence of the layer thickness and air velocity on the combustion of gas hydrate is investigated. The calculated curves for the effect of the heat transfer coefficient, external convection and vapor concentration on the combustion temperature are obtained. The layer thickness and the air velocity significantly affect the dissociation rate of methane hydrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aerov, M.E., Todes, O.M., Narinsky, D.A.: Apparatuses with the Steady Grain Layer: Hydraulic and Thermal Fundamentals of Operation. Khimiya, Leningrad (1979)

    Google Scholar 

  • Bar-Kohany, T., Sirignano, W.A.: Transient combustion of methane-hydrate sphere. Combust. Flame 163, 284–330 (2016)

    Article  Google Scholar 

  • Cai, L., Pethica, B.A., Debeneedetti, P.G., Sundaresan, S.: Formation of cyclopentane methane binary clathrate hydrate in brine solutions. Cam. Eng. Sci. 141, 125–132 (2016)

    Article  Google Scholar 

  • Chen, X.R., Li, X.S., Chen, Z.Y., Zhang, Y., Yan, K.F., Lv, Q.-N.: Experimental investigation into the combustion characteristics of propane hydrates in porous media. Energies 8, 1242–1255 (2015)

    Article  Google Scholar 

  • Chien, Y.-C., Dunn-Rankin, D.: Combustion characteristics of methane hydrate flames. Energies 12(10), 1939 (2019)

    Article  Google Scholar 

  • Chong, Z.R., Yang, S.H.B., Babu, P., Linga, P., Li, X.-S.: Review of natural gas hydrates as an energy resource: prospects and challenges. Appl. Energy 162, 1633–1652 (2016)

    Article  Google Scholar 

  • Clarke, M., Bishnoi, P.R.: Determination of the activation energy and intrinsic rate constant of methane gas hydrate dissociation. Can. J. Chem. Eng. 79, 143–147 (2001)

    Article  Google Scholar 

  • Crank, J.: The Mathematics of Diffusion, 2nd edn., pp. 89–103. Oxford University Press, Oxford (1975)

    Google Scholar 

  • Cui, Y., Lu, C., Wu, M., Peng, Y., Yao, Y., Luo, W.: Review of exploration and production technology of natural gas hydrate. Adv. Geo-Energy Res. 2(1), 53–62 (2018)

    Article  Google Scholar 

  • Cui, G., Wang, S., Dong, Z., Xing, X., Shan, T., Li, Z.: Effects of the diameter and the initial center temperature on the combustion characteristics of methane hydrate spheres. Appl. Energy 257, 114058 (2020a)

    Article  Google Scholar 

  • Cui, G., Dong, Z., Wang, S., Xing, X., Shan, T., Li, Z.: Effect of the water on the flame characteristics of methane hydrate combustion. Appl. Energy 259, 114205 (2020b)

    Article  Google Scholar 

  • Dagan, Y., Bar-Kohany, T.: Flame propagation through three-phase methane-hydrate particles. Combust. Flame 193, 25–35 (2018)

    Article  Google Scholar 

  • Falenty, A., Kuhs, W.F.: Self-preservation of CO2 gas hydrates-surface microstructure and ice perfection. J. Phys. Chem. B 113, 5975–15988 (2009)

    Article  Google Scholar 

  • Grigoriev V.A., Zorin V.M.: Theoretical Bases of Heat Engineering. Thermal Engineering Experiment, Energoatomizdat, Moscow (1988)

  • Hu, C.G., Li, X.-S.: Research progress of hydrate-based CO2 separation and capture from gas mixture. RSC Adv. 4, 18301–18316 (2014)

    Article  Google Scholar 

  • Istomin V.A., Yakushev V.S.: Gas hydrates in nature. M.: Nedra (1992)

  • Javanmardi, J., Nasrifar, K., Najibi, S.H., Moshfeghian, M.: Economic evaluation of natural gas hydrate as an alternative for natural gas transportation. Appl. Therm. Eng. 25, 1708–1723 (2005)

    Article  Google Scholar 

  • Kim, H.C., Bishnoi, P.R., Heidemann, R.A., Rizvi, S.S.H.: Kinetics of methane hydrate dissociation. Chem. Eng. Sci. 42, 1645–1653 (1987)

    Article  Google Scholar 

  • Kuhs, W.F., Genov, G., Staykova, D.K., Hansen, T.: Ice perfection and onset of anomalous preservation of gas hydrates. Phys. Chem. Chem. Phys. 6, 4917–4920 (2004)

    Article  Google Scholar 

  • Kutateladze, S.S., Leont’ev, A.I.: Heat Transfer, Mass Transfer, and Friction in Turbulent Boundary Layers. Hemisphere Publishing Corporation, New York (1989)

    Google Scholar 

  • Lee, Y., Seo, Y.-J., Ahn, T., Lee, J., Lee, J.X., Kim, S.-J., Seo, Y.: CH4-Flue gas replacement occurring in sH hydrates and its significance for CH4 recovery and CO2 sequestration. Chem. Eng. J. 308, 50–58 (2017)

    Article  Google Scholar 

  • Li, X.-S., Xu, C.G., Chen, Z.-Y., Wu, H.-Y.: Tetra-n-butyl ammonium bromide semiclathrate hydrate process for post-combustion capture carbon dioxide in the presence of dodecyl trimethyl ammonium chloride. Energy 35, 3902–3908 (2010)

    Article  Google Scholar 

  • Li, G., Li, X.-C., Yang, B., Duan, L.-P., Huang, N.-S., Zhang, Y., et al.: The use of dual horizontal wells in gas production from hydrate accumulations. Appl. Energy 112, 1303–1310 (2013)

    Article  Google Scholar 

  • Lu, S.M.: A global survey of gas hydrate development and reserves: Specifically in the marine field. Renew. Sustain. Energy Rev. 41, 884–900 (2015)

    Article  Google Scholar 

  • Maruyama, Y., Yokomori, T., Ohmura, R., Ueda, T.: Flame spreading over combustible hydrate in a laminar boundary layer. In: Proceeding of the 7th International Conference on Gas Hydrate, Edinburgh, Scotland, UK (2011)

  • Maruyama, Y., Fuse, M.J., Yokomori, T., Ohmura, R., Watanabe, S., Iwasaki, T., Iwabuchi, W., Ueda, T.: Experimental investigation of flame spreading over pure methane hydrate in a laminar boundary layer. Proc. Combust. Inst. 34, 2131–2138 (2013)

    Article  Google Scholar 

  • Mimachi, H., Takeya, S., Yoneyama, A., Hyodo, K., Takeda, T., Gotoh, Y., Murayma, T.: Natural gas storage and transportation within gas hydrate of smaller particle: size dependence of self-preservation phenomenon of natural gas hydrate. Chem. Eng. Sci. 118, 208–213 (2014)

    Article  Google Scholar 

  • Misyura, S.Y.: Developing the environmentally friendly technologies of combustion of gas hydrates. Reducing harmful emissions during combustion. Environ. Pollut. 265, 114871 (2020a)

    Article  Google Scholar 

  • Misyura, S.Y.: Dissociation of various gas hydrates (methane hydrate, double gas hydrates of methane-propane and methane-isopropanol) during combustion: assessing the combustion efficiency. Energy 206, 118120 (2020b)

    Article  Google Scholar 

  • Misyura, S.Y., Donskoy, I.G.: Dissociation kinetics of methane hydrate and CO2 hydrate for different granular composition. Fuel 262, 116614 (2020)

    Article  Google Scholar 

  • Misyura, S.Y., Donskoy, I.G.: Dissociation and combustion of a layer of methane hydrate powder: ways to increase the efficiency of combustion and degassing. Energies 14, 4855 (2021)

    Article  Google Scholar 

  • Misyura, S.Y., Donskoy, I.G.: Dissociation of gas hydrate for a single particle and for a thick layer of particles: the effect of self-preservation on the dissociation kinetics of the gas hydrate layer. Fuel 314, 122759 (2022a)

    Article  Google Scholar 

  • Misyura, S.Y., Donskoy, I.G.: Co-modeling of methane hydrate dissociation and combustion in a boundary layer. Combust. Flame 238, 111912 (2022b)

    Article  Google Scholar 

  • Misyura, S.Y., Manakov, A.Y., Morozov, V.S., Nyashina, G.S., Gaidukova, O.S., Skiba, S.S., Volkov, R.S., Voytkov, I.S.: The influence of key parameters on combustion of double gas hydrate. J. Nat. Gas Sci. Eng. 80, 103396 (2020)

    Article  Google Scholar 

  • Misyura, S.Y., Donskoy, I.G., Manakov, A.Y., Morozov, V.S., Strizhak, P.A., Skiba, S.S., Sagidullin, A.K.: Studying the influence of key parameters on the methane hydrate dissociation in order to improve the storage efficiency. J. Energy Storage 44, 103288 (2021)

    Article  Google Scholar 

  • Nakamura, Y., Katsuki, R., Yokomori, T., Ohmura, R., Takahashi, M., Iwasaki, T., Uchida, K., Ueda, T.: Combustion characteristics of methane hydrate in a laminar boundary layer. Energy Fuels 23, 1445–1449 (2009)

    Article  Google Scholar 

  • Nguyen, A.H., Koc, M.A., Shepherd, T.D., Molinero, V.: Structure of the ice-clathrate interface. J. Phys. Chem. C 119, 4104–4117 (2015)

    Article  Google Scholar 

  • Shimada, W., Takeya, S., Kamata, Y., Uchida, T., Nagao, J., Ebinuma, T., Narita, H.: Texture change of ice on anomalously preserved methane clathrate hydrate. J. Phys. Chem. B 109, 5802–5807 (2005)

    Article  Google Scholar 

  • Sloan, E.D., Jr., Koh, C.A.: Clathrate Hydrates of Natural Gases, 3rd edn. CRC Press, Boca Raton (2008)

    Google Scholar 

  • Snegirev, AYu.: Perfectly stirred reactor model to evaluate extinction of diffusion flame. Combust. Flame 162, 3622–2631 (2015)

    Article  Google Scholar 

  • Spalding, D.B.: Combustion and Mass Transfer. Pergamon Press, Oxford (1979)

    Google Scholar 

  • Sum, A.K., Koh, C.A., Sloan, E.D.: Developing a comprehensive understanding and model of hydrate in multiphase flow: from laboratory measurements to field applications. Energy Fuels 26, 4046–4052 (2012)

    Article  Google Scholar 

  • Takeya, S., Ripmeester, J.A.: Anomalous preservation of CH4 hydrate and its dependence on the morphology of ice. ChemPhysChem 11, 70–73 (2010)

    Article  Google Scholar 

  • Takeya, S., Uchida, T., Nagao, J., Ohmura, R., Shimada, W., Kamata, Y., Ebinuma, T., Narita, H.: Particle size effect of CH4 hydrate for self-preservation. Chem. Eng. Sci. 60, 1383–1387 (2005)

    Article  Google Scholar 

  • Wang, Y., Li, X.C., Li, G., Zhang, Y., Li, B., Chen, Z.Y.: Experimental investigation into methane hydrate production during three-dimensional thermal stimulation with five-spot well system. Appl. Energy 110, 90–97 (2013)

    Article  Google Scholar 

  • Windmeier, C., Oellrich, L.R.: Theoretical study of gas hydrate dissociation kinetics: model predictions. J. Phys. Chem. A. 117, 12184–12195 (2013)

    Article  Google Scholar 

  • Wu, F.H., Padilla, R.E., Dunn-Rankin, D., Chen, G.B., Chao, Y.C.: Thermal structure of methane hydrate fueled flames. Proc. Combust. Inst. 36, 4391–4398 (2017)

    Article  Google Scholar 

  • Xie, Y., Li, G., Liu, D., Liu, N., Qi, Y., Liang, D., et al.: Experimental study on a small scale of gas hydrate cold storage apparatus. Appl. Energy 87, 3340–3346 (2010)

    Article  Google Scholar 

  • Yoshioka, T., Yamamoto, Y., Yokomori, T., Ohmura, R., Ueda, T.: Experimental study on combustion of methane hydrate sphere. Exp. Fluids 56, 192 (2015)

    Article  Google Scholar 

  • Zhang, G., Rogers, R.E.: Ultra-stability of gas hydrates at 1 atm and 268,2K. Chem. Eng. Sci. 63, 2066–2074 (2008)

    Article  Google Scholar 

  • Zhong, D., Englezos, P.: Methane separation from coal mine methane gas by tetra-n-butyl ammonium bromide semiclathrate hydrate formation. Energy Fuels 26, 2098–2106 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The study was supported by a grant from the Ministry of Science and Higher Education of Russia, Agreement No. 075-15-2020-806 (Contract No. 13.1902.21.0014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Y. Misyura.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misyura, S.Y., Donskoy, I.G., Manakov, A.Y. et al. Combustion of a Powder Layer of Methane Hydrate: The Influence of Layer Height and Air Velocity Above the Layer. Flow Turbulence Combust 109, 175–191 (2022). https://doi.org/10.1007/s10494-022-00325-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-022-00325-x

Keywords

Navigation