Skip to main content
Log in

Robustness of the Leading Edge Vortex on Rotating Wings to Unsteady Perturbations

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The vast majority of research works on low aspect ratio rotating wings report that, at high angle of attack, the leading edge vortex that forms on the upper surface of the wing is stable. This ‘trick’ is used by insects and auto-rotating seeds, for example, to achieve the desirable amount of lift. Yet, a few experimental studies suggest that leading edge vortices might be unstable under similar, low Rossby number, conditions. While it is unclear what causes vortex shedding in these studies, the present communication explores the sensitivity of leading edge vortex attachment to perturbations of the rotating speed and demonstrates that shedding can be triggered even for very small perturbations, corresponding to wing tip displacements lower than 1% of the wing chord.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Bury, Y., Jardin, T.: Transitions to chaos in the wake of an axisymmetric bluff body. Phys. Lett. A 376, 3219–3222 (2012)

    Article  Google Scholar 

  • Demirdžić, I., Muzaferija, S.: Numerical method for coupled fluid flow, heat transfer and stress analysis using unstructured moving meshes with cells of arbitrary topology. Comput. Methods Appl. Mech. Eng. 125, 235–255 (1995)

    Article  Google Scholar 

  • Dumitrescu, H., Cardos, V.: Inboard stall delay due to rotation. J. Aircr. 49, 101–107 (2012)

    Article  Google Scholar 

  • Eldredge, J., Jones, A.: Leading-edge vortices: mechanics and modeling. Annu. Rev. Fluid Mech. 51, 75–104 (2019)

    Article  MathSciNet  Google Scholar 

  • Ellington, C.P., den Berg, C.V., Willmott, A.P., Thomas, A.L.: Leading-edge vortices in insect flight. Nature 384, 626–630 (1996)

    Article  Google Scholar 

  • Engels, T., Kolomenskiy, D., Schneider, K., Lehmann, F.: Bumblebee flight in heavy turbulence. Phys. Rev. Lett. 116(2), 028103 (2016)

    Article  Google Scholar 

  • Garmann, D., Visbal, M., Orkwis, P.: Three-dimensional flow structure and aerodynamic loading on a revolving wing. Phys. Fluids 25, 034101 (2013)

    Article  Google Scholar 

  • Jardin, T.: Coriolis effect and the attachment of the leading edge vortex. J. Fluid Mech. 820, 312–340 (2017)

    Article  MathSciNet  Google Scholar 

  • Jardin, T., Colonius, T.: On the lift-optimal aspect ratio of a revolving wing at low Reynolds number. J. R. Soc. Interface 15, 20170933 (2018)

    Article  Google Scholar 

  • Jardin, T., David, L.: Root cutout effects on the aerodynamics of a low-aspect-ratio revolving wing. AIAA J. 55, 2717–2726 (2017)

    Article  Google Scholar 

  • Jardin, T., Doué, N.: Influence of pitch rate on freely translating perching airfoils. J. Fluid Mech. 873, 49–71 (2019)

    Article  MathSciNet  Google Scholar 

  • Jones, A., Ford, C.P., Babinsky, H.: Three-dimensional effects on sliding and waving wings. J. Aircr. 48(2), 633–644 (2011)

    Article  Google Scholar 

  • Lentink, D., Dickinson, M.: Rotational accelerations stabilize leading edge vortices on revolving fly wings. J. Exp. Biol. 212(16), 2705–2719 (2009)

    Article  Google Scholar 

  • Muzaferija, S.: Adaptive finite volume method for flow prediction using unstructured meshes and multigrid approach. Ph.D. thesis, The Imperial College of Science, Technology and Medicine (1994)

  • Tarascio, M., Ramasamy, M., Chopra, I., Leishman, J.: Flow visualization of micro air vehicle scaled insect-based flapping wings. J. Aircr. 42(2), 385–390 (2005)

    Article  Google Scholar 

  • Wang, Z.: Vortex shedding and frequency selection in flapping flight. J. Fluid Mech. 410, 323–341 (2000)

    Article  Google Scholar 

  • Wojcik, C., Buchholz, J.: Vorticity transport in the leading-edge vortex on a rotating blade. J. Fluid Mech. 743, 249–261 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Jardin.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jardin, T. Robustness of the Leading Edge Vortex on Rotating Wings to Unsteady Perturbations. Flow Turbulence Combust 109, 27–33 (2022). https://doi.org/10.1007/s10494-022-00322-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-022-00322-0

Keywords

Navigation