Skip to main content
Log in

Large-Eddy Simulations of Spray a Flames Using Explicit Coupling of the Energy Equation with the FGM Database

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

This paper provides a numerical study on n-dodecane flames using Large-Eddy Simulations (LES) along with the Flamelet Generated Manifold (FGM) method for combustion modeling. The computational setup follows the Engine Combustion Network Spray A operating condition, which consists of a single-hole spray injection into a constant volume vessel. Herein we propose a novel approach for the coupling of the energy equation with the FGM database for spray combustion simulations. Namely, the energy equation is solved in terms of the sensible enthalpy, while the heat of combustion is calculated from the FGM database. This approach decreases the computational cost of the simulation because it does not require a precise computation of the entire composition of the mixture. The flamelet database is generated by simulating a series of counterflow diffusion flames with two popular chemical kinetics mechanisms for n-dodecane. Further, the secondary breakup of the droplet is taken into account by a recently developed modified version of the Taylor Analogy Breakup model. The numerical results show that the proposed methodology captures accurately the main characteristics of the reacting spray, such as mixture formation, ignition delay time, and flame lift-off. Additionally, it captures the “cool flame" between the flame lift-off and the injection nozzle. Overall, the simulations show differences between the two kinetics mechanisms regarding the ignition characteristics, while similar flame structures are observed once the flame is stabilised at the lift-off distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Availability of data and material

All data are available upon request.

References

  • Amsden, A.A., O’Rourke, P.J., Butler, T.D.: KIVA-II: A computer program for chemically reactive flows with sprays. Los Alamos National Lab. REP. LA-11560-MS DE89012805 (1989)

  • Balarac, G., Pitsch, H., Raman, V.: Development of a dynamic model for the subfilter scalar variance using the concept of optimal estimators. Phys. Fluid 20, 035114 (2008)

    Article  MATH  Google Scholar 

  • Barths, H., Hasse, C., Peters, N.: Computational fluid dynamics modelling of non-premixed combustion in direct injection diesel engines. Int J Engine Res 1, 249–267 (2000)

    Article  Google Scholar 

  • Bilger, R.W., Stårner, S.H., Kee, R.J.: On reduced mechanisms for methane-air combustion in nonpremixed flames. Combust Flame 80, 135–149 (1990)

    Article  Google Scholar 

  • Blombert, C.K., Zeugin, L., Pandurangi, S.S., Bolla, M., Boulouchos, K.: Modeling split snjections of ECN Spray A using a conditional moment closure combustion model with RANS and LES. SAE Int J Eng 9, 2107–2119 (2016)

    Article  Google Scholar 

  • Borghi, R.: Turbulent combustion modelling. Progr Energy Combust Sci 4, 245–292 (1988)

    Article  Google Scholar 

  • Bray, K.N.C., Champion, M., Libby, P.A.: The interaction between turbulence and chemistry in premixed turbulent flames. In: Turbulent Reactive Flows, pp. 541–563. Springer, New York, NY (1989)

  • Burcat, A., Ruscic, B.: Third millenium ideal gas and condensed phase thermochemical database for combustion (with update from active thermochemical tables). Argonne national laboratory technical report ANL-05/20 and Technion – Israel Inst. of Tech. Report TAE 960 (2005)

  • Cernansky, N..P., Friend, D.G., Farrell, J.T., Dryer, F.L., Law, C.K., Pitsch, H., Hergart, C.A., McDavid, R.M., Patel, A.K., Mueller, C.J.: Development of an experimental database and kinetic models for surrogate diesel fuels. In: SAE World Congress & Exhibition, pp. 0148–7191. SAE International, Warrendale, PA (2007)

  • Chai, X., Mahesh, K.: Dynamic k-equation model for large-eddy simulation of compressible flows. J. Fluid Mech. 699, 385–413 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Davidovic, M., Falkenstein, T., Bode, M., Cai, L., Kang, S., Hinrichs, J., Pitsch, H.: LES of n-dodecane spray combustion using a multiple representative interactive flamelets model. Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 72, 29 (2017)

  • Dukowicz, J.K.: A particle-fluid numerical model for liquid sprays. J. Computat. Phys. 35, 229–252 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  • Engine combustion network: Spray A operating condition, (2021). https://ecn.sandia.gov/diesel-spray-combustion/target-condition/spray-ab/

  • Favre, A.: Turbulence - space-time statistical properties and behavior in supersonic flows. Phys. Fluid. 26, 2851–2863 (1983)

    Article  MATH  Google Scholar 

  • Ferziger, J., Perić, M., Street, R.: Computational methods for fluid dynamics, 4th edn. Springer, Switzerland (2020)

    Book  MATH  Google Scholar 

  • Fooladgar, E., Chan, C.K., Nogenmyr, K.-J.: An accelerated computation of combustion with finite-rate chemistry using LES and an open source library for In-Situ-Adaptive Tabulation. Comput. & Fluid. 146, 42–50 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Goodwin, D.G., Speth, R.L., Moffat, H.K., Weber, B.W.: Cantera: an object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. https://www.cantera.org. Version 2.5.1 (2021)

  • Gribi, B., Lin, Y., Hui, X., Zhang, C., Sung, C.-J.: Effects of hydrogen peroxide addition on combustion characteristics of n-decane/air mixtures. Fuel 223, 324–333 (2018)

    Article  Google Scholar 

  • Grosshans, H., Griesing, M., Mönckedieck, M., Hellwig, T., Walther, B., R. Gopireddy, S., Sedelmayer, R., Pauer, W., Moritz, H.U., A. Urbanetz, N., Gutheil, E.: Numerical and experimental study of the drying of bi-component droplets under various drying conditions. Int. J. Heat Mass Transf. 96, 97–109 (2016)

  • Grosshans, H., Berrocal, E., Kristensson, E., Szász, R.: Prediction and measurement of the local extinction coefficient in sprays for 3D simulation/experiment data comparison. Int. J. Multipha. Flow 72, 218–232 (2015)

    Article  Google Scholar 

  • Issa, R.I.: Solution of the implicitly discretised fluid flow equations by operator-splitting. J. Computat. Phys. 62(1), 40–65 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  • Jurić, F., Stipiś, M., Samec, N., Hriberşek, M., Honus, S., Vujanović, M.: Numerical investigation of multiphase reactive processes using flamelet generated manifold approach and extended coherent flame combustion model. Energy Convers. Manage. 240, 114261 (2021)

    Article  Google Scholar 

  • Kahila, H., Wehrfritz, A., Kaario, O., Ghaderi Masouleh, M., Maes, N., Somers, B., Vuorinen, V.: Large-eddy simulation on the influence of injection pressure in reacting spray A. Combust. Flame 191, 142–159 (2018)

    Article  Google Scholar 

  • Kee, R.J., Coltrin, M.E., Glarborg, P.: Chemically reacting flow: theory and practice, 2st. Wiley, New York, NY (2018)

    Google Scholar 

  • Klein, R., Schoen, L.J.: 6. Role of formaldehyde in combustion, pp. 58–68. American Chemical Society, Washington DC (1958)

  • Knudsen, E., Kim, S.H., Pitsch, H.: An analysis of premixed flamelet models for large eddy simulation of turbulent combustion. Phys Fluids 22, 1152109 (2010)

    Article  Google Scholar 

  • Lessani, B., Papalexandris, M.V.: Time accurate calculation of variable density flows with strong temperature gradients and combustion. J. Comput. Phys. 212, 218–246 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, S., Wei, X.: Ignition delay characteristics of kerosene with decomposed hydrogen peroxide. J. Propul. Power 32, 431–438 (2016)

    Article  Google Scholar 

  • Lillo, P.M., Pickett, L.M., Persson, H., Andersson, O., Kook, S.: Diesel spray ignition detection and spatial/temporal correction. SAE Int J Engin 5, 1330–1346 (2012)

    Article  Google Scholar 

  • Liu, A.B., Mather, D., Reitz, R.D.: Modeling the effects of drop drag and breakup on fuel sprays. In: International Congress & Exposition. SAE International, Warrendale, PA (1993)

  • Long, A., Speth, R., Green, W.: Ember: an open-source, transient solver for 1d reacting flow using large kinetic models, applied to strained extinction. Combust Flame 195, 1–12 (2018)

    Article  Google Scholar 

  • Ma, L., Roekaerts, D.: Modeling of spray jet flame under MILD condition with non-adiabatic FGM and a new conditional droplet injection model. Combust Flame 165, 402–423 (2016)

    Article  Google Scholar 

  • Ma, L., Roekaerts, D.: Structure of spray in hot-diluted coflow flames under different coflow conditions: A numerical study. Combust Flame 172, 20–37 (2016)

    Article  Google Scholar 

  • Maas, U., Pope, S.B.: Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space. Combust Flame 3, 239–264 (1992)

    Article  Google Scholar 

  • Maes, N., Meijer, M., Dam, N., Somers, B., Toda, H.B., Bruneaux, G., Skeen, S.A., Pickett, L.M., Manin, J.: Characterization of spray a flame structure for parametric variations in ECN constant-volume vessels using chemiluminescence and laser-induced fluorescence. Combust Flame 174, 138–151 (2016)

    Article  Google Scholar 

  • Maghbouli, A., Akkurt, B., Lucchini, T., D’Errico, G., Deen, N.G., Somers, B.: Modelling compression ignition engines by incorporation of the flamelet generated manifolds combustion closure. Combust Theory Modell 23, 414–438 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Meyers, R.E., O’Brien, E.E.: The joint pdf of a scalar and its gradient at a point in a turbulent fluid. Combust Sci Tech 26, 123–134 (1981)

    Article  Google Scholar 

  • Moin, P., Squires, K., Cabot, W., Lee, S.: A dynamic subgrid-scale model for compressible turbulence and scalar transport. Phys. Fluid. A: Fluid Dyn. 3(11), 2746–2757 (1991)

    Article  MATH  Google Scholar 

  • Narayanaswamy, K., Pepiot, P., Pitsch, H.: A chemical mechanism for low to high temperature oxidation of n-dodecane as a component of transportation fuel surrogates. Combust Flame 161, 866–884 (2014)

    Article  Google Scholar 

  • Nguyen, K.-B., Dan, T., Asano, I.: Combustion, performance and emission characteristics of direct injection diesel engine fueled by jatropha hydrogen peroxide emulsion. Energy 74, 301–308 (2014)

    Article  Google Scholar 

  • Nicholson, L., Fang, X., Camm, J., Davy, M., Richardson, D.: Comparison of transient Diesel spray break-up between two computational fluid fynamics codes. In: WCX World Congress Experience, pp. 01–0307. SAE International, Warrendale, PA (2018)

  • Oldenhof, E., Tummers, M., Veen, E., Roekaerts, D.J.E.M.: Ignition kernel formation and lift-off behaviour of jet-in-hot-coflow flames. Combust Flame 157, 1553–1563 (2010)

    Article  Google Scholar 

  • Papalexandris, M.V.: Combustion and fuels. Presses Universitaires Louvain, Belgium (2020)

    Google Scholar 

  • Payri, F., García-Oliver, J.M., Novella, R., Pérez-Sànchez, E.J.: Influence of the n-dodecane chemical mechanism on the CFD modelling of the diesel-like ECN spray A flame structure at different ambient conditions. Combust Flame 208, 198–218 (2019)

    Article  Google Scholar 

  • Peters, N.: Laminar flamelet concepts in turbulent combustion. Symposium (International) on Combustion 21, 1231–1250 (1988)

  • Peters, N.: Laminar diffusion flamelet models in non-premixed turbulent combustion. Progr Energy Combust Sci 10, 319–339 (1984)

    Article  Google Scholar 

  • Pierce, C.D., Moin, P.: A dynamic model for subgrid-scale variance and dissipation rate of a conserved scalar. Phys Fluid 10, 3041–3044 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Pierce, D.C., Moin, P.: Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion. J Fluid Mech 504, 73–97 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Poinsot, T., Veynante, D.: Theoretical and numerical combustion, 2nd edn. R.T. Edwards Inc., Philadelphia, PA (2005)

    Google Scholar 

  • Ranz, W.E., Marshall, W.R.: Evaporation from drops: Part I. Chem. Engr. Prog. 48(3), 141–146 (1952)

    Google Scholar 

  • Ranz, W.E., Marshall, W.R.: Evaporation from drops: Part II. Chem. Engr. Prog. 48(3), 173–180 (1952)

    Google Scholar 

  • Ranzi, E., Frassoldati, A., Grana, R., Cuoci, A., Faravelli, T., Kelley, A.P., Law, C.K.: Hierarchical and comparative kinetic modeling of laminar flame speeds of hydrocarbon and oxygenated fuels. Progress in energy and combustion science 38, 468–501 (2012)

    Article  Google Scholar 

  • Ranzi, E., Frassoldati, A., Stagni, A., Pelucchi, M., Cuoci, A., Faravelli, T.: Reduced kinetic schemes of complex reaction systems: Fossil and biomass-derived transportation fuels. Int J Chem Kinet 46, 512–542 (2014)

    Article  Google Scholar 

  • Ribert, G., Champion, M., Gicquel, O., Darabiha, N., Veynante, D.: Modeling nonadiabatic turbulent premixed reactive flows including tabulated chemistry. Combust Flame 141, 271–280 (2005)

    Article  Google Scholar 

  • Robin, V., Mura, A., Champion, M., Plion, P.: A multi-dirac presumed PDF model for turbulent reactive flows with variable equivalence ratio. Combust Science Tech 178, 1843–1870 (2006)

    Article  Google Scholar 

  • Salehi, F., Cleary, M.J., Masri, A.R., Ge, Y., Klimenko, A.Y.: Sparse-Lagrangian MMC simulations of an n-dodecane jet at engine-relevant conditions. Proceed Combust Institute 36, 3577–3585 (2017)

    Article  Google Scholar 

  • Sarathy, S.M., Westbrook, C.K., Mehl, M., Pitz, W.J., Togbe, C., Dagaut, P., Wang, H., Oehlschlaeger, M.A., Niemann, U., Seshadri, K., Veloo, P.S., Ji, C., Egolfopoulos, F.N., Lu, T.: Comprehensive chemical kinetic modeling of the oxidation of 2-methylalkanes from C7 to C20. Combust Flame 158, 2338–2357 (2011)

    Article  Google Scholar 

  • Sirignano, W.A.: Fluid dynamics and transport of droplets and sprays. Cambridge University Press, UK (2010)

    Book  Google Scholar 

  • Skeen, S.A., Manin, J., Pickett, L.M.: Simultaneous formaldehyde PLIF and high-speed schlieren imaging for ignition visualization in high-pressure spray flames. Proceed Combust Institut 35, 3167–3174 (2015)

    Article  Google Scholar 

  • Stahl, G., Warnatz, J.: Numerical investigation of time-dependent properties and extinction of strained methane- and propane-air flamelets. Combust Flame 85, 285–299 (1991)

    Article  Google Scholar 

  • Sula, C., Grosshans, H., Papalexandris, M.: Assessment of droplet breakup models for spray flow simulations. Flow, Turbulen Combust 105, 889–914 (2020)

    Article  Google Scholar 

  • Sutherland, J.C., Smith, P.J., Chen, J.H.: Quantification of differential diffusion in nonpremixed systems. Combust Theory Modell 9, 365–383 (2005)

    Article  MATH  Google Scholar 

  • Tekgül, B., Kahila, H., Kaario, O., Vuorinen, V.: Large-eddy simulation of dual-fuel spray ignition at different ambient temperatures. Combust Flame 215, 51–65 (2020)

    Article  Google Scholar 

  • Van Oijen, J.A., De Goey, L.P.H.: Modelling of premixed laminar flames using flamelet-fenerated manifolds. Combust Sci Tech 161, 113–13 (2000)

    Article  Google Scholar 

  • Vervisch, L., Hauguel, R., Domingo, P., Rullaud, M.: Three facets of turbulent combustion modelling: DNS of premixed V-flame, LES of lifted nonpremixed flame and RANS of jet-flame. J Turbulence 5, 4 (2004)

    Article  Google Scholar 

  • Wehrfritz, A.: Large eddy simulation of fuel spray combustion. Doctoral Dissertation, Aalto University, Finland (2016)

  • Wehrfritz, A., Kaario, O., Vuorinen, V., Somers, B.: Large eddy simulation of n-dodecane spray flames using flamelet generated manifolds. Combust Flame 167, 113–131 (2016)

    Article  Google Scholar 

  • Weller, H.G., Tabor, G., Jasak, H., Fureby, C.: A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput Phys 12, 620–631 (1998)

    Article  Google Scholar 

  • Wilke, C.: A viscosity equation for gas mixtures. J Chem Phys 18, 517–519 (1950)

    Article  Google Scholar 

  • Xue, Q., Som, S., Senecal, P.K., Pomraning, E.: Large eddy simulation of fuel-spray under non-reacting IC engine conditions. Atomizat Spray 23, 925–955 (2013)

    Article  Google Scholar 

  • Yoshizawa, A.: Statistical theory for compressible turbulent shear flows, with the application to subgrid modeling. Phys Fluid 29, 2152–2164 (1987)

    Article  MATH  Google Scholar 

  • Zhang, Y., Xu, S., Zhong, S., Bai, X.-S., Wang, H., Yao, M.: Large eddy simulation of spray combustion using flamelet generated manifolds combined with artificial neural networks. Energy AI 2, 100021 (2020)

    Article  Google Scholar 

  • Zhang, Y., Wang, H., Both, A., Ma, L., Yao, M.: Effects of turbulence-chemistry interactions on auto-ignition and flame structure for n-dodecane spray combustion. Combust Theory Modell 23, 907–934 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author gratefully acknowledges the financial support of the National Research Fund of Belgium (FNRS) in the form of the ERANET BiofCFD program.

Funding

This study was funded by FNRS (Grant No. R.50.04.17.F).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miltiadis V. Papalexandris.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sula, C., Grosshans, H. & Papalexandris, M.V. Large-Eddy Simulations of Spray a Flames Using Explicit Coupling of the Energy Equation with the FGM Database. Flow Turbulence Combust 109, 193–223 (2022). https://doi.org/10.1007/s10494-022-00320-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-022-00320-2

Keywords

Navigation