Skip to main content
Log in

On the Need for Turbulence Chemistry Interaction Modelling in Highly Resolved Large-Eddy Simulations of Mild Combustion

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The Moderate or Intense Low-oxygen Dilution (MILD) combustion is a promising technique to reduce pollutant emissions of combustion processes, especially nitrogen oxides. This combustion mode involves Turbulence-Chemistry Interaction (TCI), which constitutes a challenge in terms of numerical simulation since it must be properly captured. Up to now, the TCI has been modelled and the corresponding models generally involve coefficients, leading to epistemic uncertainties and, therefore, to different numerical results depending on the used model. The study presented in this paper aims to assess the relevance of performing Large Eddy Simulation of a typical Jet-in-Hot-Coflow flame, simulating diluted combustion, assuming that the TCI is directly resolved, given the grid and the chemical kinetics resolutions. Avoiding TCI modelling allows for lower numerical uncertainties. However, simulations without TCI modelling will normally fail for other types of flames and for higher Reynolds-numbers, so that such simulations can normally only be conducted using TCI modelling. Here, the simulations are performed using Finite Rate Chemistry without TCI model on the Adelaide Jet-in-Hot-Coflow flame. First, the proposed methodology was experimentally validated, highlighting that the obtained reacting results are consistent in terms of temperature and mass fractions with the measurements. Additionally, the results obtained with the “TCI-resolved” assumption are compared to the results obtained using a classical TCI model, the Partially Stirred Reactor model. Moreover, the validity of the approach, consisting in directly resolving the TCI, is assessed based on an analysis of the local Damköhler number A large part of the mesh cells presents a very low Damköhler number, confirming that TCI modelling is not required for the burner under consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  • Afarin, Y., Tabejamaat, S.: Effect of hydrogen on H2/CH4 flame structure of MILD combustion using the LES method. Int. J. Hydrogen. Energ. 38, 3447–3458 (2013)

    Article  Google Scholar 

  • Aouissi, M., Bounif, A., Bensayah, K.: Scalar turbulence model investigation with variable turbulent Prandtl number in heated jets and diffusion flames. Heat Mass Transfer 44, 1065–1077 (2008)

    Article  Google Scholar 

  • Bilger, R.W., Stårner, S.H., Kee, R.J.: On reduced mechanisms for methane/air combustion in nonpremixed flames. Combust. Flame. 80, 135–149 (1990)

    Article  Google Scholar 

  • Bénard, P., Moureau, V., Lartigue, G., D’Angelo, Y.: Large-Eddy Simulation of a hydrogen enriched methane/air meso-scale combustor. Int. J. Hydrogen Energy 42(4), 2397–2410 (2017)

    Article  Google Scholar 

  • Cavaliere, A., Joannon, M.: Mild combustion. Prog. Energ. Combust. 30, 329–366 (2004)

    Article  Google Scholar 

  • Chomiak, J., Karlsson, A.: Flame liftoff in diesel sprays. Proc. Combust. Inst. 26, 2557–2564 (1996)

    Article  Google Scholar 

  • Christo, F.C., Dally, B.B.: Modeling turbulent reacting jets issuing into a hot and diluted coflow. Combust. Flame. 142, 117–129 (2005)

    Article  Google Scholar 

  • Chua, L.P., Antonia, R.A.: Turbulent Prandtl number in a circular jet. Int. J. Heat Mass Transf. 33(2), 331–339 (1990)

    Article  Google Scholar 

  • Coffee, T.P.: Kinetic mechanisms for premixed, laminar, steady state methane/air flames. Combust. Flame. 55(2), 161–170 (1984)

    Article  Google Scholar 

  • Dally, B.B., Karpetis, A.N., Barlow, R.S.: Structure of turbulent non-premixed jet flames in a diluted hot coflow. Proc. Combust. Inst. 29, 1147–1154 (2002)

    Article  Google Scholar 

  • De, A., Oldenhof, E., Sathiah, P., Roekaerts, D.J.E.M.: Numerical simulation of Delft-Jet-in-Hot-Coflow (DJHC) flames using the eddy dissipation Concept model for turbulence-chemistry interaction. Flow Turbul. Combust. 87, 537–567 (2011)

    Article  Google Scholar 

  • Duwig, C., Nogenmyr, K.-J., Chan, C.-K., Dunn, M.J.: Large eddy simulations of a piloted lean premix jet flame using finite-rate chemistry. Combust. Theor. Model. 15(4), 537–568 (2011)

    Article  Google Scholar 

  • Goodwin, D.G., Moffat, H.K., Speth, R.L.: Cantera: An Object-oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes (2015)

  • Gran, I.R., Magnussen, B.F.: A numerical study of a bluff-body stabilized diffusion flame. Part 2. influence of combustion modeling and finite-rate chemistry. Combust. Sci. Technol. 119, 191–217 (1996)

    Article  Google Scholar 

  • Habli, S., Mahjoub Saïd, N., Le Palec, G., Bournot, H.: Numerical study of a turbulent plane jet in a coflow environment. Comput. Fluids 89, 20–28 (2014)

    Article  MathSciNet  Google Scholar 

  • Hunt, J.C.R., Wray, A.A., Moin, P.: Eddies, streams, and convergence zones in turbulent flows. Studying Turbulence Using Numerical Simulation Databases 2, Proceedings of the Summer Program, pp. 193–208 (1988)

  • Ihme, M., See, Y.C.: LES flamelet modeling of a three-stream MILD combustor: analysis of flame sensitivity to scalar inflow condition. Proc. Combust. Inst. 33, 1309–1317 (2011)

    Article  Google Scholar 

  • Katsuki, M., Hasegawa, T.: The science and technology of combustion in highly preheated air. Proc. Combust. Inst. 27(2), 3135–3146 (1998)

    Article  Google Scholar 

  • Kazakov, A., Frenklach, M.: Reduced Reaction Sets based on GRI-Mech 1.2. http://combustion.berkeley.edu/drm/ (1994)

  • Kim, S.H., Huh, K.Y., Dally, B.B.: Conditional moment closure modeling of turbulent nonpremixed combustion in diluted hot coflow. Proc. Combust. Inst. 30, 751–757 (2005)

    Article  Google Scholar 

  • Kulkarni, R.M., Polifke, W.: LES of Delft-Jet-In-Hot-Coflow (DJHC) with tabulated chemistry and stochastic fields combustion model. Fuel. Process. Technol. 107, 138–146 (2013)

    Article  Google Scholar 

  • Labahn, J.W., Devaud, C.B.: Large Eddy Simulations (LES) including Conditional Source-term Estimation (CSE) applied to two Delft-Jet-in-Hot-Coflow (DJHC) flame. Combust. Flame. 164, 68–84 (2016)

    Article  Google Scholar 

  • Lamouroux, J., Ihme, M., Fiorina, B., Gicquel, O.: Tabulated chemistry approach for diluted combustion regimes with internal recirculation and heat losses. Combust. Flame. 161(8), 2120–2136 (2014)

    Article  Google Scholar 

  • Li, Z., Cuoci, A., Parente, A.: Large Eddy Simulation of MILD combustion using finite rate chemistry: Effect of combustion sub-grid closure. Proc. Combust. Inst. 37, 4519–4529 (2019)

    Article  Google Scholar 

  • Li, Z., Ferrarotti, M., Cuoci, A., Parente, A.: Finite-rate chemistry modelling of non-conventional combustion regimes using a Partially-Stirred Reactor closure: combustion model formulation and implementation details. Appl. Energy. 225, 637–655 (2018)

    Article  Google Scholar 

  • Lilly, D.K.: A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids A. 4(3), 633–635 (1992)

    Article  MathSciNet  Google Scholar 

  • Lu, T.F., Law, C.K.: A criterion based on computational singular perturbation for the identification of quasi steady state species: A reduced mechanism for methane oxidation with NO chemistry. Combust. Flame. 154, 761–774 (2008)

    Article  Google Scholar 

  • Lu, H., Zou, C., Shao, S., Yao, H.: Large-eddy simulation of MILD combustion using partially stirred reactor approach. Proc. Combust. Inst. 37, 4507–4518 (2019)

    Article  Google Scholar 

  • Lupant, D., Lybaert, P.: Assessment of the EDC combustion model in MILD conditions with in-furnace experimental data. Appl. Therm. Eng. 75, 93–102 (2015)

    Article  Google Scholar 

  • Moureau, V., Domingo, P., Vervisch, L.: Design of a massively parallel CFD code for complex geometries. Comptes Rendus Mécanique 339(2–3), 141–148 (2011)

    Article  Google Scholar 

  • Oldenhof, E., Tummers, M.J., van Veen, E.H., Roekaerts, D.J.E.M.: Ignition kernel formation and lift-off behaviour of jet-in-hot-coflow flames. Combust. Flame. 157, 1167–1178 (2010)

    Article  Google Scholar 

  • Oldenhof, E., Tummers, M.J., van Veen, E.H., Roekaerts, D.J.E.M.: Role of entrainment in the stabilisation of jet-in-hot-coflow flames. Combust. Flame. 158, 1553–1563 (2011)

    Article  Google Scholar 

  • Pamiès, M., Weiss, P.-E., Garnier, E., Deck, S., Sagaut, P.: Generation of synthetic turbulent inflow data for large eddy simulation of spatially evolving wall-bounded flows. Phys. Fluids 21, 045103-045103–15 (2009)

    Article  Google Scholar 

  • Poinsot, T., Veynante, D.: Theorical and Numerical Combustion, 2nd edn. Edwards, Philadelphia (2005)

  • Pope, S.B.: Turbulent flows. Cornell University Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  • Sankaran, R., Hawkes, E.R., Chen, J.H., Lu, T.F., Law, C.K.: Structure of a spatially developing turbulent lean methane-air Bunsen flame. Proc. Combust. Inst. 31, 1291–1298 (2007)

    Article  Google Scholar 

  • Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., Gardiner, Jr W. C., Lissianski, V.V., Qin, Z.: GRI 3.0 Mechanism, Gas Research Institute. http://combustion.berkeley.edu/gri-mech/ (1999)

  • Winckelmans, G.: Vortex Methods, Encyclopedia of Computational Mechanics: Fluids. Wiley (2004)

  • Wünning, J.A., Wünning, J.G.: Flameless oxidation to reduce thermal NO-formation. Prog. Energy Combust. Sci. 23, 81–94 (1997)

    Article  Google Scholar 

  • Yamashita, H., Shimada, M., Takeno, T.: A numerical study on flame stability at the transition point of jet diffusion flames. Symp. (Int.) Combust. 26(1), 27–34 (1996)

    Article  Google Scholar 

  • Zhou, H., Yang, T., Dally, B., Ren, Z.: LES/TPDF investigation of the role of reaction and diffusion timescales in the stabilization of a jet-in-hot-coflow CH\(_4\) /H\(_2\) flame. Combust. Flame. 211, 477–492 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. B. Dally for providing the JHC experimental data set. Computational resources have been provided by the Consortium des Équipements de Calcul Intensif en fédération Wallonie Bruxelles (CECI) funded by the Fond de la Recherche Scientifique de Belgique (FRS-FNRS) under convention 2.5020.11. The present research also benefited from computational resources made available on the Tier-1 supercomputer of the Fédération Wallonie-Bruxelles, infrastructure funded by the Walloon Region under the grant agreement n1117545. Part of this work is funded by the Energy Institute of UMONS. The authors thank also G. Lartigue and V. Moureau for providing the code YALES2 and for improving it constantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie Cordier.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cordier, M., Bénard, P., Lybaert, P. et al. On the Need for Turbulence Chemistry Interaction Modelling in Highly Resolved Large-Eddy Simulations of Mild Combustion. Flow Turbulence Combust 108, 509–538 (2022). https://doi.org/10.1007/s10494-021-00282-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-021-00282-x

Keywords

Navigation