Skip to main content
Log in

Analysis of High-order Explicit LES Dynamic Modeling Applied to Airfoil Flows

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

A high-order low dissipative numerical framework is discussed to tackle simultaneously the modeling of unresolved sub-grid scale flow turbulence and the capturing of shock waves. The flows around two different airfoil profiles are simulated using a Spectral Difference discretisation scheme. First, a transitional, almost incompressible, low Reynolds number flow over a Selig-Donovan 7003 airfoil. Second, a high Reynolds number flow over a RAE2822 airfoil under transonic conditions. These flows feature both laminar and turbulent flow physics and are thus particularly challenging for turbulence sub-grid scale modeling. The accuracy of the recently developed Spectral Element Dynamic Model, specifically capable of detecting spatial under-resolution in high-order flow simulations, is evaluated. Concerning the test in transonic conditions, the additional complexity due to the presence of shock waves has been handled using an artificial viscosity shock-capturing technique based on bulk viscosity. To mitigate the impact of the shock-capturing on turbulence dissipation, it was necessary to combine the high-order modal-type shock detection with a usual sensor measuring the local flow compressibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  • Antoniadis, A., Tsoutsanis, P., Drikakis, D.: Assessment of high-order finite volume methods on unstructured meshes for RANS solutions of aeronautical configurations. Comput Fluids 146, 86–104 (2017). https://doi.org/10.1016/j.compfluid.2017.01.002

    Article  MathSciNet  MATH  Google Scholar 

  • Beck, A.D., Bolemann, T., Flad, D., Frank, H., Gassner, G.J., Hindenlang, F., Munz, C.-D.: High-order discontinuous Galerkin spectral element methods for transitional and turbulent flow simulations. Int. J. Num. Methods Fluids 76(8), 522–548 (2014). https://doi.org/10.1002/fld.3943

    Article  MathSciNet  Google Scholar 

  • Beck, A.D., Bolemann, T., Flad, D., Frank, H., Gassner, G.J., Hindenlang, F., Munz, C.-D.: High-order discontinuous Galerkin spectral element methods for transitional and turbulent flow simulations. Int. J. Num. Methods Fluids 76(8), 522–548 (2014)

    MathSciNet  Google Scholar 

  • Bogey, C., Bailly, C.: A family of low dispersive and low dissipative explicit schemes for flow and noise computations. J. Comput. Phys. 194(1), 194–214 (2004)

    MATH  Google Scholar 

  • Boom, P., Zingg, D.: Time-accurate flow simulations using an efficient Newton-Krylov-Schur approach with high-order temporal and spatial discretization, in: 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, (2013), p. 383

  • Bull, J.R., Jameson, A.: Simulation of the Taylor-Green vortex using high-order flux reconstruction schemes. AIAA J. 53(9), 2750–2761 (2015)

    Google Scholar 

  • Cao, G., Su, H., Xu, J., Xu, K.: Implicit high-order gas kinetic scheme for turbulence simulation. Aerosp. Sci. Technol. 92, 958–971 (2019). https://doi.org/10.1016/j.ast.2019.07.020

    Article  Google Scholar 

  • Castonguay, P., Liang, C., Jameson, A.: Simulation of transitional flow over airfoils using the spectral difference method, in: 40th fluid dynamics conference and exhibit, (2010), p. 4626

  • Catalano, P., Tognaccini, R.: Large eddy simulations of the flow around the SD7003 airfoil, in: AIMETA Conference, (2011), pp. 1–10

  • Chapelier, J.-B., Lodato, G.: A spectral-element dynamic model for the large-eddy simulation of turbulent flows. J. Comput. Phys. 321, 279–302 (2016)

    MathSciNet  MATH  Google Scholar 

  • Chapelier, J.-B., Lodato, G.: Study of the Spectral Difference numerical dissipation for turbulent flows using unstructured grids. Flow Turbul. Combust. 99(3), 643–664 (2017). https://doi.org/10.1007/s10494-017-9847-5

    Article  Google Scholar 

  • Chapelier, J.-B., Lodato, G., Jameson, A.: A study on the numerical dissipation of the spectral difference method for freely decaying and wall-bounded turbulence. Comput. Fluids 139, 261–280 (2016)

    MathSciNet  MATH  Google Scholar 

  • Chapelier, J.-B., Lodato, G., Jameson, A.: A study on the numerical dissipation of the spectral difference method for freely decaying and wall-bounded turbulence. Comput. Fluids 139, 261–280 (2016). https://doi.org/10.1016/j.compfluid.2016.03.006

    Article  MathSciNet  MATH  Google Scholar 

  • Coakley, T., Huang, P.: Turbulence modeling for high speed flows, in: 30th Aerospace Sciences Meeting and Exhibit, (1992), p. 436

  • Cook, P., McDonald, M., Firmin, M.: Aerofoil RAE 2822: Pressure distribution and boundary layer and wake measurements, AGARD Advisory Report 138, Advisory Group for Aerospace Research and Development (1979)

  • Counsil, J.N., Goni Boulama, K.: Low-Reynolds-number aerodynamic performances of the NACA 0012 and Selig-Donovan 7003 airfoils. J. Aircraft 50(1), 204–216 (2013)

    Google Scholar 

  • Deck, S.: Numerical simulation of transonic buffet over a supercritical airfoil. AIAA J. 43(7), 1556–1566 (2005)

    Google Scholar 

  • Drikakis, D., Fureby, C., Grinstein, F.F., Youngs, D.: Simulation of transition and turbulence decay in the Taylor-Green vortex. J. Turbul. 8, N20 (2007)

    MATH  Google Scholar 

  • Ducros, F., Ferrand, V., Nicoud, F., Weber, C., Darracq, D., Gacherieu, C., Poinsot, T.: Large-eddy simulation of the shock/turbulence interaction. J. Comput. Phys. 152(2), 517–549 (1999)

    MATH  Google Scholar 

  • Erlebacher, G., Hussaini, M.Y., Speziale, C.G., Zang, T.A.: Toward the large-eddy simulation of compressible turbulent flows. J. Fluid Mech. 238, 155–185 (1992)

    MATH  Google Scholar 

  • Fernandez, P., Nguyen, N., Peraire, J.: The hybridized discontinuous Galerkin method for Implicit Large-Eddy Simulation of transitional turbulent flows. J. Comput. Phys. 336, 308–329 (2017). https://doi.org/10.1016/j.jcp.2017.02.015

    Article  MathSciNet  MATH  Google Scholar 

  • Fernandez, P., Nguyen, N.-C., Peraire, J.: On the ability of discontinuous Galerkin methods to simulate under-resolved turbulent flows, arXiv preprint arXiv:1810.09435 (2018)

  • Fernandez, P., Nguyen, N.-C., Peraire, J.: Entropy-stable hybridized discontinuous Galerkin methods for the compressible Euler and Navier-Stokes equations, arXiv preprint arXiv:1808.05066 (2018)

  • Fernandez, P., Nguyen, N.-C., Peraire, J.: A physics-based shock capturing method for large-eddy simulation, arXiv preprint arXiv:1806.06449 (2018)

  • Fernandez, P., Nguyen, N., Peraire, J.: A physics-based shock capturing method for unsteady laminar and turbulent flows, AIAA Paper 2018–0062 (2018) 1–13. AIAA Aerospace Sciences Meeting Kissimmee, Florida (2018)

  • Flad, D., Gassner, G.: On the use of kinetic energy preserving DG-schemes for large eddy simulation. J. Comput. Phys. 350, 782–795 (2017). https://doi.org/10.1016/j.jcp.2017.09.004

    Article  MathSciNet  MATH  Google Scholar 

  • Galbraith, M., Visbal, M.: Implicit large eddy simulation of low Reynolds number flow past the SD7003 airfoil, in: 46th AIAA Aerospace Sciences Meeting and Exhibit, (2008), p. 225

  • Garmann, D.J., Visbal, M.R., Orkwis, P.D.: Comparative study of implicit and subgrid-scale model large-eddy simulation techniques for low-Reynolds number airfoil applications. Int. J. Num. Methods Fluids 71(12), 1546–1565 (2013)

    MathSciNet  MATH  Google Scholar 

  • Garmann, D. J., Visbal, M. R.: C3. 3: Implicit large eddy-simulations of transitional flow over the sd7003 airfoil using compact finite-differencing and filtering, in: 2nd International workshop on high-order CFD methods, Cologne, Germany, (2013)

  • Garnier, E., Mossi, M., Sagaut, P., Comte, P., Deville, M.: On the use of shock-capturing schemes for large-eddy simulation. J. Comput. Phys. 153(2), 273–311 (1999)

    MATH  Google Scholar 

  • Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A Fluid Dynam. 3(7), 1760–1765 (1991)

    MATH  Google Scholar 

  • Ghosal, S.: An analysis of numerical errors in large-eddy simulations of turbulence. J. Comput. Phys. 125(1), 187–206 (1996)

    MathSciNet  MATH  Google Scholar 

  • Grinstein, F.F., Margolin, L.G., Rider, W.J.: Implicit Large Eddy Simulation, vol. 10. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  • Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49(3), 357–393 (1983)

    MathSciNet  MATH  Google Scholar 

  • Helm, C. M., Martin, M. P.: New LES of a hypersonic shock/turbulent boundary layer interaction, in: 54th AIAA Aerospace Sciences Meeting, (2016), p. 0346

  • Herbst, S. L., Kähler, C. J., Hain, R.: Influence of large-scale free-stream turbulence on an SD7003 airfoil at low reynolds numbers., in: 2018 Applied Aerodynamics Conference, (2018), p. 3490

  • Huynh, H. T.: A flux reconstruction approach to high-order schemes including discontinuous galerkin methods, in: 18th AIAA Computational Fluid Dynamics Conference, (2007), p. 4079

  • Jameson, A.: A proof of the stability of the spectral difference method for all orders of accuracy. J. Sci. Comput. 45(1), 348–358 (2010)

    MathSciNet  MATH  Google Scholar 

  • Jameson, A., Vincent, P., Castonguay, P.: On the non-linear stability of flux reconstruction schemes. J. Sci. Comput. 50(2), 434–445 (2012)

    MathSciNet  MATH  Google Scholar 

  • Jiang, R., Tian, Y., Liu, P.: Transonic buffet control by rearward buffet breather on supercritical airfoil and wing. Aerosp. Sci. Technol. 89, 204–219 (2019)

    Google Scholar 

  • Johnsen, E., Larsson, J., Bhagatwala, A.V., Cabot, W.H., Moin, P., Olson, B.J., Rawat, P.S., Shankar, S.K., Sjögreen, B., Yee, H.C., et al.: Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves. J. Comput. Phys. 229, 1213–1237 (2010)

    MathSciNet  MATH  Google Scholar 

  • Kalkan, O.O.: Implementation of k-epsilon Turbulence Models in a Two Dimensional Parallel Navier-Stokes SSolver on Hybrid Grids. Middle East Technical University, Ankara, Turkey (2014)

    Google Scholar 

  • Karniadakis, G., Sherwin, S.: Spectral/hp Element Methods for Computational Fluid Dynamics. Oxford University Press, Oxford (2013)

    MATH  Google Scholar 

  • Kawai, S., Shankar, S.K., Lele, S.K.: Assessment of localized artificial diffusivity scheme for large-eddy simulation of compressible turbulent flows. J. Comput. Phys. 229(5), 1739–1762 (2010)

    MathSciNet  MATH  Google Scholar 

  • Knight, D.D., Degrez, G.: Shock wave boundary layer interactions in high Mach number flows a critical survey of current numerical prediction capabilities. Agard Advisory Report Agard AR 2, 1 (1998)

  • Kopriva, D.A., Kolias, J.H.: A conservative staggered-grid Chebyshev multidomain method for compressible flows. J. Comput. Phys. 125(1), 244–261 (1996)

    MathSciNet  MATH  Google Scholar 

  • Kopriva, D. A., Jimenez, E.: An assessment of the efficiency of nodal discontinuous galerkin spectral element methods, in: Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation Laws, Springer, (2013), pp. 223–235

  • Kravchenko, A., Moin, P.: On the effect of numerical errors in large eddy simulations of turbulent flows. J. Comput. Phys. 131(2), 310–322 (1997)

    MATH  Google Scholar 

  • Lee, B.: Self-sustained shock oscillations on airfoils at transonic speeds. Prog. Aerosp. Sci. 37(2), 147–196 (2001)

    Google Scholar 

  • Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103(1), 16–42 (1992)

    MathSciNet  MATH  Google Scholar 

  • Li, J., Grube, N., Priebe, S., Martin, P.: LES study of shock wave and turbulent boundary layer interaction, in: 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, (2013), p. 984

  • Li, J., Grube, N. E., Priebe, S., Martin, P.: Analysis of the large eddy simulation of a shock wave and turbulent boundary layer interaction, in: 43rd AIAA Fluid Dynamics Conference, (2013), p. 2734

  • Lian, Y., Shyy, W.: Laminar-turbulent transition of a low Reynolds number rigid or flexible airfoil. AIAA J. 45(7), 1501–1513 (2007)

    Google Scholar 

  • Liou, W.W., Huang, G., Shih, T.-H.: Turbulence model assessment for shock wave/turbulent boundary-layer interaction in transonic and supersonic flows. Comput. Fluids 29(3), 275–299 (2000)

    MATH  Google Scholar 

  • Liu, Y., Vinokur, M., Wang, Z.: Spectral difference method for unstructured grids I: basic formulation. J. Comput. Phys. 216(2), 780–801 (2006)

    MathSciNet  MATH  Google Scholar 

  • Lodato, G.: Characteristic modal shock detection for discontinuous finite element methods. Comput. Fluids 179, 309–333 (2019)

    MathSciNet  MATH  Google Scholar 

  • Lodato, G., Chapelier, J.-B.: Evaluation of the Spectral Element Dynamic Model for large-eddy simulation on unstructured, deformed meshes. Flow Turbul. Combust. 101(2), 271–294 (2018). https://doi.org/10.1007/s10494-018-9935-1

    Article  Google Scholar 

  • Lodato, G., Chapelier, J.-B.: Evaluation of the spectral element dynamic model for large-eddy simulation on unstructured, deformed meshes. Flow Turb. Combust. 101, 271–294 (2018)

    Google Scholar 

  • Luo, H., Baum, J.D., Lohner, R.: Extension of Harten-Lax-van Leer scheme for flows at all speeds. AIAA J. 43(6), 1160–1166 (2005)

    Google Scholar 

  • Mavriplis, D.J., Martinelli, L.: Multigrid solution of compressible turbulent flow on unstructured meshes using a two-equation model. Int. J. Num. Methods Fluids 18(10), 887–914 (1994). https://doi.org/10.1002/fld.1650181002

    Article  MATH  Google Scholar 

  • Moura, R.C., Sherwin, S.J., Peiró, J.: Linear dispersion-diffusion analysis and its application to under-resolved turbulence simulations using discontinuous Galerkin spectral/hp methods. J. Comput. Phys. 298, 695–710 (2015)

    MathSciNet  MATH  Google Scholar 

  • Nguyen, L., Golubev, V.V., Visbal, M.R.: Numerical study of transitional SD7003 airfoil interacting with canonical upstream flow disturbances. AIAA J. 56, 158–181 (2018)

    Google Scholar 

  • Nicoud, F., Ducros, F.: Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Comb. 62(3), 183–200 (1999)

    MATH  Google Scholar 

  • Olson, D., Katz, A., Naguib, A., Koochesfahani, M., Rizzetta, D., Visbal, M.: An investigation of the effect of freestream turbulence on the laminar separation bubble on an SD7003 airfoil, in: 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, (2011), p. 395

  • Persson, P.-O., Peraire, J.: Sub-cell shock capturing for discontinuous Galerkin methods, AIAA Paper 2006-112 (2006) 1–13, 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, Jan. 9–12, (2006)

  • Persson, P.-O.: Shock capturing for high-order discontinuous Galerkin simulation of transient flow problems, AIAA Paper 2013-3061 (2013) 1–9, 21st AIAA Computational Fluid Dynamics Conference, San Diego, CA, Jun. 24–27, (2013)

  • Pirozzoli, S.: Numerical methods for high-speed flows. Ann. Rev. Fluid Mech. 43(1), 163–194 (2011). https://doi.org/10.1146/annurev-fluid-122109-160718

    Article  MathSciNet  MATH  Google Scholar 

  • Priebe, S., Tu, J.H., Rowley, C.W., Martín, M.P.: Low-frequency dynamics in a shock-induced separated flow. J. Fluid Mech. 807, 441–477 (2016)

    Google Scholar 

  • Radespiel, R., Windte, J., Scholz, U.: Numerical and experimental flow analysis of moving airfoils with laminar separation bubbles. AIAA J. 45(6), 1346–1356 (2007)

    Google Scholar 

  • Rahman, M. R., Labib, M. I., Hasan, A. T., Ali, M., Mitsutake, Y., Setoguchi, T.: Effect of cavity on shock oscillation in transonic flow over RAE2822 supercritical airfoil, in: AIP conference proceedings, Vol. 1754, AIP Publishing LLC, (2016), p. 040025

  • Roe, P.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43, 357–372 (1981)

    MathSciNet  MATH  Google Scholar 

  • Selig, M.S., Guglielmo, J.J., Broeren, A.P., Giguère, P.: Summary of Low-speed Airfoil Data. University of Illinois at Urbana-Champaign, SoarTech Publications (1995)

    Google Scholar 

  • Shome, B., Radle, M.: Assessment of transitional model for prediction of aerodynamic performance of airfoils at low Reynolds number flow regime. Tech. rep, SAE Technical Paper (2013)

  • Sinha, K., Mahesh, K., Candler, G.V.: Modeling the effect of shock unsteadiness in shock/turbulent boundary-layer interactions. AIAA J. 43(3), 586–594 (2005)

    Google Scholar 

  • Skarolek, V., Miyaji, K.: Transitional flow over a SD7003 wing using flux reconstruction scheme, in: 52nd Aerospace Sciences Meeting, (2014), p. 0250

  • Smagorinsky, J.: General circulation experiments with the primitive equations: I the basic experiment. Month. Weather Rev. 91(3), 99–164 (1963)

    Google Scholar 

  • Sun, Y., Wang, Z., Liu, Y.: High-order multidomain spectral difference method for the Navier-Stokes equations on unstructured hexahedral grids. Commun. Comput. Phys. 2(2), 310–333 (2007)

    MathSciNet  MATH  Google Scholar 

  • Taylor, G.. I.: The spectrum of turbulence, Proceedings of the Royal Society of London. Series A-Mathematical and Physical Sciences 164(919), 476–490 (1938)

  • Tonicello, N., Lodato, G., Vervisch, L.: Entropy preserving low dissipative shock capturing with wave characteristic based sensor for high-order methods. Comput. Fluids 197, 104357 (2020)

    MathSciNet  MATH  Google Scholar 

  • Uranga, A., Persson, P.-O., Drela, M., Peraire, J.: Implicit large eddy simulation of transitional flows over airfoils and wings, in: 19th AIAA Computational Fluid Dynamics, (2009), p. 4131

  • Van den Abeele, K., Lacor, C., Wang, Z.J.: On the stability and accuracy of the spectral difference method. J. Sci. Comput. 37(2), 162–188 (2008)

    MathSciNet  MATH  Google Scholar 

  • Vanharen, J., Puigt, G., Vasseur, X., Boussuge, J.-F., Sagaut, P.: Revisiting the spectral analysis for high-order spectral discontinuous methods. J. Comput. Phys. 337, 379–402 (2017)

    MathSciNet  MATH  Google Scholar 

  • Vermeire, B.C., Nadarajah, S., Tucker, P.G.: Implicit large eddy simulation using the high-order correction procedure via reconstruction scheme. Int.J. Num. Methods Fluids 82(5), 231–260 (2016)

    MathSciNet  Google Scholar 

  • Vincent, P.E., Castonguay, P., Jameson, A.: Insights from von Neumann analysis of high-order flux reconstruction schemes. J. Comput. Phys. 230(22), 8134–8154 (2011)

    MathSciNet  MATH  Google Scholar 

  • Vreman, A.: An eddy-viscosity subgrid-scale model for turbulent shear flow: algebraic theory and applications. Phys. Fluids 16(10), 3670–3681 (2004)

    MATH  Google Scholar 

  • Vreman, B., Geurts, B., Kuerten, H.: Discretization error dominance over subgrid terms in large eddy simulation of compressible shear layers in 2D. Commun. Num. Methods Eng. 10(10), 785–790 (1994)

    MATH  Google Scholar 

  • Wang, Z., Liu, Y., May, G., Jameson, A.: Spectral difference method for unstructured grids II: Extension to the Euler equations. J. Sci. Comput. 32(1), 45–71 (2007)

    MathSciNet  MATH  Google Scholar 

  • Wu, M., Martin, M.P.: Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp. AIAA J. 45(4), 879–889 (2007)

    Google Scholar 

  • Yun, T., Shiqi, G., Peiqing, L., Jinjun, W.: Transonic buffet control research with two types of shock control bump based on RAE2822 airfoil. Chin. J. Aeronaut. 30(5), 1681–1696 (2017)

    Google Scholar 

  • Zhang, W., Zhu, L., Liu, Y., Kou, J.: Machine learning methods for turbulence modeling in subsonic flows over airfoils, arXiv preprint arXiv:1806.05904 (2018)

  • Zhou, Y., Wang, Z. J.: Implicit large eddy simulation of low Reynolds number transitional flow over a wing using high-order spectral difference method, In: 40th fluid dynamics conference and exhibit, (2010), p. 4442

  • Zimmermann, D.-M., Mayer, R., Lutz, T., Krämer, E.: Impact of model parameters of SALSA turbulence model on transonic buffet prediction. AIAA J. 52, 874–877 (2018)

    Google Scholar 

Download references

Acknowledgements

The use of the SD solver originally developed by Antony Jameson’s group at Stanford University is gratefully acknowledged. This work was granted access to the high-performance computing resources of CRIANN.

Funding

The PhD scholarship of the first author is founded by the University of Rouen Normandie. Financial support to the second and third authors was provided by ANR under grant number ANR-18-CE05-0030.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niccolò Tonicello.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tonicello, N., Lodato, G. & Vervisch, L. Analysis of High-order Explicit LES Dynamic Modeling Applied to Airfoil Flows. Flow Turbulence Combust 108, 77–104 (2022). https://doi.org/10.1007/s10494-021-00273-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-021-00273-y

Keywords

Navigation