Skip to main content
Log in

Visualization of Valved Pulsejet Combustors and Evidence of Compression Ignition

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Valved pulsejet combustor geometries of different chamber and tail pipe lengths are tested experimentally. High-speed pressure and ionization data from various opaque engines are complemented with high-speed visualization data (from transparent engines of the same geometric sizing) acquired from three cameras, with the first resolving the broadband luminosity in the device, the second ascertaining the reed valves’ opening time and the third capturing the pulsejet exhaust flow using background oriented Schlieren. The resulting information presents a detailed description of the valved pulsejet mechanics that has been lacking in literature. The rapid combustion event powering every cycle is attributed to multiple auto-ignitions occurring mostly in tandem. An important precursor to this combustion event is the “whipping” produced by the fast closure of the reed valves, which creates a buffer region of unburned reactants ready to be consumed simultaneously. By cross-sectionally averaging the broadband luminosity over different cycles, x-t plots of combustion and fluid dynamics inside a pulsejet combustor are presented, which along with other acquired data, result in the conclusion that Helmholtz resonance is the mode of operation as opposed to the widely claimed quarter-wave oscillatory behavior. By drawing from analogues seen in compression ignition engines, it is argued that valved pulsejet combustors behave very closely to the latter in terms of the method of sustained operation—rapid combustion caused by multiple auto-ignitions events—brought forth by a periodic compression of the reacting mixtures enabled by the fluidic piston (as opposed to a mechanical one in automotive engines) in the tail pipe. In this sense, it is argued that compression ignition, rather than the much broader and less clear “resonant combustion” might be a better descriptor for pulsejet behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Anand, V., Gutmark, E.: A review of pollutants emissions in various pressure gain combustors. Int. J. Spray Combust. Dyn. 11, 1–18 (2019). https://doi.org/10.1177/1756827719870724

    Article  Google Scholar 

  • Anand, V., Jodele, J., Knight, E., et al.: Dependence of pressure, combustion and frequency characteristics on valved pulsejet combustor geometries. Flow Turbul. Combust. 100, 829–848 (2018)

    Article  Google Scholar 

  • Anand, V., Jodele, J., Zahn, A., et al.: Revisiting the Argus pulsejet engine of V-1 buzz bombs: an experimental investigation of the first mass-produced pressure gain combustion device. Exp. Therm. Fluid Sci. 109, 1–14 (2019). https://doi.org/10.1016/j.expthermflusci.2019.109910

    Article  Google Scholar 

  • Blomquist, A.C.: Experimental Gas-Fired Pulse-Combustion Studies. Argonne, Illinois (1982)

    Google Scholar 

  • Cai, X., Li, J., Su, Z.: Efficient mushroom cloud simulation on GPU. In: International Conference on Technologies for E-Learning and Digital Entertainment. pp. 695–706 (2008)

  • Daw, C.S., Thomas, J.F., Richards, G.A., Narayanaswami, L.L.: Chaos in thermal pulse combustion. Chaos 5, 662–670 (1995). https://doi.org/10.1063/1.166137

    Article  Google Scholar 

  • Diedrich, G.: The aero-resonator power plant of the V-l flying bomb. Project squid technical memorandum, Princeton University, New Jersey (1948)

  • Fieweger, K., Blumenthal, R., Adomeit, G.: Self-ignition of S.I. engine model fuels: a shock tube investigation at high pressure. Combust. Flame 109, 599–619 (1997). https://doi.org/10.1016/S0010-2180(97)00049-7

    Article  Google Scholar 

  • Geng, T., Zheng, F., Kuznetsov, A.V., Roberts, W.L.: Numerical simulation on the effect of starting vortex ring on pulsejet thrust. In: 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Cincinnati, OH (2007)

  • Geng, T., Kiker, A., Ordon, R., et al.: Combined numerical and experimental investigation of a hobby-scale pulsejet. J. Propuls. Power 23, 186–193 (2007). https://doi.org/10.2514/1.18593

    Article  Google Scholar 

  • Geng, T., Zheng, F., Kuznetsov, A.V., et al.: Comparison between numerically simulated and experimentally measured flowfield quantities behind a pulsejet. Flow Turbul. Combust. 84, 653–667 (2010). https://doi.org/10.1007/s10494-010-9247-6

    Article  MATH  Google Scholar 

  • Ghani, A., Poinsot, T., Gicquel, L., Staffelbach, G.: LES of longitudinal and transverse self-excited combustion instabilities in a bluff-body stabilized turbulent premixed flame. Combust. Flame 162, 4075–4083 (2015). https://doi.org/10.1016/j.combustflame.2015.08.024

    Article  Google Scholar 

  • Gillis, C.L., McKee J.W.: Wartime Report. National Advisory Committee for Aeronautics, pp. 1–19 (1941)

  • Heywood, J.B.: Internal Combustion Engine Fundamentals, 2nd edn. McGraw Hill, New York (2018)

    Google Scholar 

  • In, V., Spano, M.L., Neff, J.D., et al.: Maintenance of chaos in a computational model of a thermal pulse combustor. Chaos 7, 605–613 (1997). https://doi.org/10.1063/1.166260

    Article  Google Scholar 

  • Jodele, J., Zahn, A., Anand, V., Gutmark, E.J.: Effects of geometrical variation on pressure, ionization, and thrust in a valved pulsejet. In: Joint Propulsion Conference. Cincinnati, OH (2018)

  • Kawahara, N., Tomita, E.: Visualization of auto-ignition and pressure wave during knocking in a hydrogen spark-ignition engine. Int. J. Hydrogen Energy 34, 3156–3163 (2009). https://doi.org/10.1016/j.ijhydene.2009.01.091

    Article  Google Scholar 

  • Keller, J.O., Saito, K., Kishimoto, K.: An experimental investigation of a pulse combustor—flow visualization by Schlieren photography. In: Fall Meeting of the Combustion Institute. Stanford, California (1984)

  • Keller, J.O., Saito, K.: Measurements of the combusting flow in a pulse combustor. Combust. Sci. Technol. 53, 137–163 (1987). https://doi.org/10.1080/00102208708947024

    Article  Google Scholar 

  • Keller, J.O., Bramlette, T.T., Westbrook, C.K., Dec, J.E.: Pulse combustion: the quantification of characteristic times. Combust. Flame 79, 151–161 (1990). https://doi.org/10.1016/0010-2180(90)90040-X

    Article  Google Scholar 

  • Keller, J.O., Bramlette, T.T., Barr, P.K., Eibeck, P.A.: Pulse combustion: Tailpipe Exit Jet characteristics. Combust. Sci. Technol. 94, 167–192 (1993). https://doi.org/10.1080/00102209308935309

    Article  Google Scholar 

  • Lee, J.H., Lee, B.H.K., Shanfield, I.: Two-dimensional unconfined gaseous detonation waves. Symp. (Int) Compust. 10, 805–815 (1965)

    Article  Google Scholar 

  • Lisanti JC, Zhu X, Roberts WL (2019) Improving the Performance of an Active Valve Resonant Pulse Combustor. In: AIAA Propulsion and Energy 2019 Forum. Indianapolis, IN

  • Litke, P., Schauer, F., Paxson, D., et al.: Assessment of the performance of a pulsejet and comparison with a pulsed-detonation engine. In: 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reno, NV (2005)

  • Lu, X., Han, D., Huang, Z.: Fuel design and management for the control of advanced compression-ignition combustion modes. Prog. Energy Combust. Sci. 37, 741–783 (2011). https://doi.org/10.1016/j.pecs.2011.03.003

    Article  Google Scholar 

  • Mason, S.A., Miller, R.J., Taylor, M.: Fluid mechanics of pulse pressure-gain combustors. In: 46th AIAA Aerospace Sciences Meeting and Exhibit. Reno, NV (2008)

  • Meng, X., De Jong, W., Kudra, T.: A state-of-the-art review of pulse combustion: principles, modeling, applications and R&D issues. Renew. Sustain. Energy Rev. 55, 73–114 (2016). https://doi.org/10.1016/j.rser.2015.10.110

    Article  Google Scholar 

  • Paxson, D., Dougherty, K.: Ejector enhanced pulsejet based pressure gain combustors: an old idea with a new twist. In: 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Tucson, Arizona (2005)

  • Pobezhimov, V.N.: Simulation of a working process in the pulsejet engine with an aerodynamic valve on the basis of the thermodynamic cycle analysis. Russ. Aeronaut. 50, 60–64 (2007). https://doi.org/10.3103/S1068799807010102

    Article  Google Scholar 

  • Pulkrabek, W.W.: Engineering fundamentals of the internal combustion engine. J. Eng. Gas Turbines Power 126, 198 (2004). https://doi.org/10.1115/1.1669459

    Article  Google Scholar 

  • Putnam, A.A.: Pulse combustion. Prog. Energy Combust. Sci. 12, 43–79 (1986). https://doi.org/10.1016/0360-1285(86)90013-4

    Article  Google Scholar 

  • Qatomah, M.Y., Lisanti, J.C., Roberts, W.L.: Influence of fuel composition on the operation of a liquid fueled resonant pulse combustor. In: 2018 Joint Propulsion Conference. Cincinnati, OH (2018)

  • Raffel, M.: Background-oriented schlieren (BOS) techniques. Exp. Fluids 56, 1–17 (2015). https://doi.org/10.1007/s00348-015-1927-5

    Article  Google Scholar 

  • Reuter, D., Daniel, B.R., Jagoda, J., Zinn, B.T.: Periodic mixing and combustion processes in gas fired pulsating combustors. Combust. Flame 65, 281–290 (1986). https://doi.org/10.1016/0010-2180(86)90042-8

    Article  Google Scholar 

  • Rhode, M.A., Rollins, R.W., Markworth, A.J., et al.: Controlling chaos in a model of thermal pulse combustion. J. Appl. Phys. 78, 2224–2232 (1995). https://doi.org/10.1063/1.360138

    Article  Google Scholar 

  • Richards, G.A., Morris, G.J., Shaw, D.W., et al.: Thermal pulse combustion. Combust. Sci. Technol. 94, 57–85 (1993)

    Article  Google Scholar 

  • Rienstra, S.W., Hirschberg, A.: An Introduction to Acoustics. Technische Universiteit Eindhoven, Eindhoven (2001)

    Google Scholar 

  • Tang, Y.M., Waldherr, G., Jagoda, J.I., Zinn, B.T.: Heat release timing in a nonpremixed Helmholtz pulse combustor. Combust. Flame 100, 251–261 (1995). https://doi.org/10.1016/0010-2180(94)00054-V

    Article  Google Scholar 

  • Trancossi, M., Pascoa, J., Xisto, C.: Temperature oscillations in the wall of a cooled multi pulsejet propeller for aeronautic propulsion. In: SAE Technical Papers. SAE International (2016)

  • Turns, Stephen: An Introduction to Combustion. McGraw-Hill International, Singapore (2006)

    MATH  Google Scholar 

  • Wang, Z., Liu, H., Reitz, R.D.: Knocking combustion in spark-ignition engines. Prog. Energy Combust. Sci. 61, 78–112 (2017). https://doi.org/10.1016/j.pecs.2017.03.004

    Article  Google Scholar 

  • Williams, T.C.: Combustion, NOx Formation and Mixing Processes in Helmholtz Pulse Combustors. Loughborough University, Loughborough (2000)

    Google Scholar 

  • Williams, T.C., Hargrave, G.K., Garner, C.P., Hanby, V.I.: Inlet mixing and NOx formation in a Helmholtz pulse combustor. Proc. Combust. Inst. 28, 1289–1295 (2000). https://doi.org/10.1016/S0082-0784(00)80342-2

    Article  Google Scholar 

  • Wolf, P., Staffelbach, G., Gicquel, L.Y.M., et al.: Acoustic and Large Eddy Simulation studies of azimuthal modes in annular combustion chambers. Combust. Flame 159, 3398–3413 (2012). https://doi.org/10.1016/j.combustflame.2012.06.016

    Article  Google Scholar 

  • Yungster, S., Paxson, D.E., Perkins, H.: Numerical evaluation of an ejector-enhanced resonant pulse combustor with a poppet inlet valve and a converging exhaust nozzle. In: 52nd AIAA/SAE/ASEE Joint Propulsion Conference. Salt Lake City, UT (2016)

  • Yungster, S., Paxson, D.E., Perkins, H.D., Scientist, S.: Effect of fuel injection and mixing characteristics on pulse-combustor performance at high-pressure. In: 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Cleveland, OH (2014)

  • Yungster, S., Paxson, D.E., Perkins, H.D.: Computational Study of Compact Ejector-Enhanced Resonant Pulse Combustors. In: Joint Propulsion Conference. Cincinnati, OH (2018)

  • Yusupaliev, U., Savenkova, N.P., Troshchiev, Y.V., et al.: Vortex rings and plasma toroidal vortices in homogeneous unbounded media. II. The study of vortex formation process. Bull. Lebedev. Phys. Inst. 38, 275–282 (2011). https://doi.org/10.3103/S1068335611090065

    Article  Google Scholar 

  • Zheng, F., Ordon, R.L., Scharton, T.D., et al.: A new acoustic model for valveless pulsejets and its application to optimization thrust. J. Eng. Gas Turbines Power 130, 041501 (2008). https://doi.org/10.1115/1.2900730

    Article  Google Scholar 

  • Zinn, B.T.: Pulse combustion: recent applications and research issues (invited topical review). Proc. Combust. Inst. 24, 1297 (1992)

    Article  Google Scholar 

Download references

Funding

This study was funded by FMV Sweden (Grant No.: # 415509-LB937080).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Anand.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 5773 kb)

Supplementary material 2 (MP4 2234 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anand, V., Jodele, J., Shaw, V. et al. Visualization of Valved Pulsejet Combustors and Evidence of Compression Ignition. Flow Turbulence Combust 106, 901–924 (2021). https://doi.org/10.1007/s10494-020-00203-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-020-00203-4

Keywords

Navigation