Skip to main content
Log in

Turbulence–Combustion Interactions in Premixed and Non-premixed Flames Generated by Hot Active Turbulent Jets

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Direct numerical simulations of turbulent jet ignition (TJI)-assisted combustion of lean hydrogen–air mixtures are performed in a three-dimensional planar jet configuration for various thermo-chemical conditions. TJI is a novel ignition enhancement method which facilitates the combustion of lean and ultra-lean fuel–air mixtures by rapidly and continuously exposing them to high temperature combustion products. Fully compressible gas dynamics and species equations are solved with high order finite difference methods. The hydrogen–air reaction is simulated by a detailed chemical kinetics mechanism. Turbulence–combustion interactions in TJI systems are studied here for different conditions using the flame heat release, temperature, species concentrations, and a newly defined progress variable. Important phenomena such as localized flame extinction/re-ignition and simultaneous existence of premixed/non-premixed flames in TJI-assisted combustion are also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Abbreviations

TJI:

Turbulent jet ignition

DNS:

Direct numerical simulation

TPJ:

Turbulent plane jet

\(u_i\) :

Velocity component in ith direction (m/s)

\(e_t\) :

Total energy (J/kg)

\(\Theta _{ij}\) :

Total stress tensor

\(\tau _{ij}\) :

Viscous stress tensor

\(q_i\) :

Heat flux vector (kg/s3)

\(J_i^\alpha \) :

Species diffusion term (m2/s)

\(\dot{S}_\alpha \) :

Rate of mass production/destruction per unit volume for species \(\alpha \) due to chemical reaction (kg/s)

\({\mathcal {R}}\) :

TJI-assisted combustion progress variable

\(W_{\alpha }\) :

Molecular weight of species \(\alpha \) (kg/mol)

\(R^0\) :

Universal gas constant (J/kg K)

\(h_{\alpha }\) :

Enthalpy of species \(\alpha \) (J/kg)

\(C_{{\text{p}}_{\alpha }}\) :

Specific heat of species \(\alpha \) (J/kg K)

\(\Delta h_{f,\alpha }^0\) :

Enthalpy of formation of species \(\alpha \) (J/kg)

D :

Width of turbulent plane jet (m)

\(U_j\) :

Jet velocity (m/s)

\(U_{co}\) :

Coflow velocity (m/s)

\(r_u\) :

Velocity ratio

xy,  and z :

Stream-wise, cross-stream, and span-wise directions

\(\tau _0\) :

Flow-through time (s)

References

  • Afshari, A., Jaberi, F., Shih, T.: Large-eddy simulations of turbulent flows in an axisymmetric dump combustor. AIAA J. 46(7), 1576 (2008)

    Google Scholar 

  • Arndt, C., Schiel, R., Gounder, J., Meier, W., Aigner, M.: Flame stabilization and auto-ignition of pulsed methane jets in a hot coflow: influence of temperature. Proc. Combust. Inst. 34(1), 1483–1490 (2013)

    Google Scholar 

  • Banaeizadeh, A., Li, Z., Jaberi, F.: Compressible scalar filtered mass density function model for high-speed turbulent flows. AIAA J. 49(10), 2130 (2011)

    Google Scholar 

  • Banaeizadeh, A., Afshari, A., Schock, H., Jaberi, F.: Large-eddy simulations of turbulent flows in internal combustion engines. Int. J. Heat Mass Transf. 60, 781–796 (2013)

    Google Scholar 

  • Beerer, D., McDonell, V., Therkelsen, P., Cheng, R.K.: Flashback and turbulent flame speed measurements in hydrogen/methane flames stabilized by a low-swirl injector at elevated pressures and temperature. J. Eng. Gas Turbines Power 136, 20242–20254 (2014)

    Google Scholar 

  • Bezgin, L., Kopchenov, V., Sharipov, A., Titova, N., Starik, A.: Evaluation of prediction ability of detailed reaction mechanisms in the combustion performance in hydrogen/air supersonic flows. Combust. Sci. Technol. 185(1), 62–94 (2013)

    Google Scholar 

  • Bisetti, F., Abdelgadir, A., Steinmetz, S., Attili, A., Roberts, W.: Self-similar scaling of pressurised sooting methane/air coflow flames at constant Reynolds and Grashof numbers. Combust. Flame 196, 300–313 (2018)

    Google Scholar 

  • Boivin, P., Dauptain, A., Jiménez, C., Cuenot, B.: Simulation of a supersonic hydrogenair autoignition-stabilized flame using reduced chemistry. Combust. Flame 159(4), 1779–1790 (2012)

    Google Scholar 

  • Clavin, P.: Dynamic behavior of premixed flame fronts in laminar and turbulent flows. Progress Energy Combust. Sci. 11(1), 1–59 (1985)

    Google Scholar 

  • Denker, D., Attili, A., Luca, S., Bisetti, F., Gauding, M., Pitsch, H.: Dissipation element analysis of turbulent premixed jet flames. Combust. Sci. Technol. 191(9), 1677–1692 (2019)

    Google Scholar 

  • Djebaili, N., Lisbet, R., Dupre, G., Patillard, C.: Ignition of a combustible mixture by a hot unsteady gas jet. Combust. Sci. Technol. 104, 273–285 (1995)

    Google Scholar 

  • Dorofeev, S., Bezmelnitsin, A., Sidorov, V., Yankin, J., Matsukov, I.: Turbulent jet initiation of detonation in hydrogen–air mixtures. Shock Waves 6(2), 73–78 (1996)

    Google Scholar 

  • Gordeyev, S., Thomas, E.: Coherent structure in the turbulent planar jet. Part 1. Extraction of proper orthogonal decomposition eigenmodes and their self-similarity. J. Fluid Mech. 414, 145–194 (2000)

    MATH  Google Scholar 

  • Gunnar, H.: Hot-wire measurements in a plane turbulent jet. J. Appl. Mech. 32(4), 721–734 (1965)

    Google Scholar 

  • Hinze, J.: Turbulence. McGraw-Hill, New York (1975)

    Google Scholar 

  • Iglesias, I., Vera, M., Sanchez, A.L., Linan, A.: Numerical analyses of deflagration initiation by a hot jet. Combust. Theory Model. 16(6994), 994–1010 (2012)

    Google Scholar 

  • Jaberi, F., James, S.: A dynamic similarity model for large eddy simulation of turbulent combustion. Phys. Fluids 10(7), 1775–1777 (1998)

    Google Scholar 

  • Jaberi, F., Miller, R., Mashayek, F., Givi, P.: Differential diffusion in binary scalar mixing and reaction. Combust. Flame 109(4), 561–577 (1997)

    Google Scholar 

  • Jaberi, F., Colucci, P., Colucci, S., Givi, P., Pope, S.: Filtered mass density function for large-eddy simulation of turbulent reacting flows. J. Fluid Mech. 401, 85–121 (1999)

    MATH  Google Scholar 

  • James, S., Jaberi, F.: Large scale simulations of two-dimensional nonpremixed methane jet flames. Combust. Flame 123(4), 465–487 (2000)

    Google Scholar 

  • Jin, T., Luo, K., Lu, S., Fan, J.: DNS investigation on flame structure and scalar dissipation of a supersonic lifted hydrogen jet flame in heated coflow. Int. J. Hydrogen Energy 38(23), 9886–9896 (2013)

    Google Scholar 

  • Ju, Y., Niioka, T.: Reduced kinetic mechanism of ignition for nonpremixed hydrogen/air in a supersonic mixing layer. Combust. Flame 99, 240–246 (1994)

    Google Scholar 

  • Kee, R., Rupley, F., Miller, J.: Chemkin-II: a Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics (1989)

  • Kennedy, C., Carpenter, M., Lewis, R.: Low-storage, explicit Runge–Kutta schemes for the compressible Navier–Stokes equations. Appl. Numer. Math. 35(3), 177–219 (2000)

    MathSciNet  MATH  Google Scholar 

  • Kerstein, A.: Linear-eddy modeling of turbulent transport. Part 4. Structure of diffusion flames. Combust. Sci. Technol. 81(1–3), 75–96 (1992)

    Google Scholar 

  • Klimenko, A., Bilger, R.: Conditional moment closure for turbulent combustion. Progress Energy Combust. Sci. 25(6), 595–687 (1999)

    Google Scholar 

  • Kotsovinos, N.: A note on the spreading rate and virtual origin of a plane turbulent jet. J. Fluid Mech. 77, 305–311 (1976)

    Google Scholar 

  • Lele, S.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103(1), 16–42 (1992)

    MathSciNet  MATH  Google Scholar 

  • Li, Z., Banaeizadeh, A., Rezaeiravesh, S., Jaberi, F.: Advanced modeling of high speed turbulent reacting flows. In: 50th AIAA Aerospace Sciences Meeting (2012)

  • Lin, Y., Jansohn, P., Boulouchos, K.: Turbulent flame speed for hydrogen-rich fuel gases at gas turbine relevant conditions. Int. J. Hydrogen Energy 39(35), 20242–20254 (2014)

    Google Scholar 

  • Lu, S., Fan, J., Luo, K.: High-fidelity resolution of the characteristic structures of a supersonic hydrogen jet flame with heated co-flow air. Int. J. Hydrogen Energy 37(4), 3528–3539 (2012)

    Google Scholar 

  • Luca, S., Attili, A., Schiavo, E., Creta, F., Bisetti, F.: On the statistics of flame stretch in turbulent premixed jet flames in the thin reaction zone regime at varying reynolds number. Proc. Combust. Inst. 37(2), 2451–2459 (2019)

    Google Scholar 

  • Madnia, C., Jaberi, F., Givi, P.: Large eddy simulation of heat and mass transport in turbulent flows. In: Sparrow, E.M., Minkowycz, W.J., Murthy, J.Y. (eds.) Handbook of Numerical Heat Transfer, pp. 167–189. Wiley, Hoboken (2000)

    Google Scholar 

  • Mittal, G., Raju, M., Sung, S.: CFD modeling of two-stage ignition in a rapid compression machine: assessment of zero-dimensional approach. Combust. Flame 157(7), 1316–1324 (2010)

    Google Scholar 

  • Najm, H., Paul, P., Mueller, C., Wyckoff, P.: On the adequacy of certain experimental observables as measurements of flame burning rate. Combust. Flame 113(3), 312–332 (1998)

    Google Scholar 

  • Nikolaou, Z., Swaminathan, N.: Heat release rate markers for premixed combustion. Combust. Flame 161(12), 3073–3084 (2014)

    Google Scholar 

  • Paul, P., Najm, H.: Planar laser-induced fluorescence imaging of flame heat release rate. Symp. Int. Combust. 27(1), 43–50 (1998)

    Google Scholar 

  • Peters, N.: Laminar diffusion flamelet models in non-premixed turbulent combustion. Progress Energy Combust. Sci. 10(3), 319–339 (1984)

    Google Scholar 

  • Peters, N.: Laminar flamelet concepts in turbulent combustion. Symp. Int. Combust. 21(1), 1231–1250 (1988)

    Google Scholar 

  • Phillips, H.: Ignition in a transient turbulent jet of hot inert gas. Combust. Flame 19(2), 187–195 (1972)

    Google Scholar 

  • Pierce, C., Moin, P.: Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion. J. Fluid Mech. 504, 73–97 (2004)

    MathSciNet  MATH  Google Scholar 

  • Poinsot, T., Lelef, S.: Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101(1), 104–129 (1992)

    MathSciNet  MATH  Google Scholar 

  • Pope, S.: Calculation of a plane turbulent jet. AIAA J. 22(7), 896–904 (1983)

    MATH  Google Scholar 

  • Pope, S.: Pdf methods for turbulent reactive flows. Progress Energy Combust. Sci. 11(2), 119–192 (1985)

    Google Scholar 

  • Pope, S.: Turbulent premixed flames. Annu. Rev. Fluid Mech. 19, 237–270 (1987)

    Google Scholar 

  • Pope, S.: Turbulent Flows. Cambridge University Press, New York (2000)

    MATH  Google Scholar 

  • Rehm, J.: The relationship between vorticity/strain and reaction zone structure in turbulent non-premixed jet flames. Symp. Int. Combust. 27(1), 1113–1120 (1998)

    Google Scholar 

  • Rutland, C., Trouvé, A.: Direct simulations of premixed turbulent flames with nonunity Lewis numbers. Combust. Flame 94(1–2), 41–57 (1993)

    Google Scholar 

  • Sadanandan, R., Markus, R., Schießl, R., Maas, U., Olofsson, J., Seyfried, H., Richter, M., Aldén, M.: Detailed investigation of ignition by hot gas jets. Proc. Combust. Inst. 31(1), 719–726 (2007)

    Google Scholar 

  • Seitzman, J., Lieuwen, T.: Turbulent flame propagation characteristics of high hydrogen content fuels

  • Stahl, G., Warnatz, J.: Numerical investigation of time-dependent properties and extinction of strained methane and propane–air flamelets. Combust. Flame 85, 285–299 (1991)

    Google Scholar 

  • Steinberger, C., Vidoni, T., Givi, P.: The compositional structure and the effects of exothermicity in a nonpremixed planar jet flame. Combust. Flame 94(3), 217–232 (1993)

    Google Scholar 

  • Vagelopoulos, C., Egolfopoulos, F., Law, C.: Further considerations on the determination of laminar flame speeds with the counterflow twin-flame technique. Symp. Int. Combust. 25(1), 1341–1347 (1994)

    Google Scholar 

  • Validi, A.: High fidelity numerical simulations of turbulent jet ignition and combustion. Ph.D. Thesis, Michigan State University (2016)

  • Validi, A., Jaberi, F.: Numerical study of turbulent jet ignition in a lean premixed configuration. Flow Turbul. Combust. 10(1), 197–2242018 (2018)

    Google Scholar 

  • Validi, A., Schock, H., Jaberi, F.: Turbulent jet ignition assisted combustion in a rapid compression machine. Combust. Flame 186, 65–82 (2018)

    Google Scholar 

  • Wang, H., Luo, K., Lu, S., Fan, J.: Direct numerical simulation and analysis of a hydrogen/air swirling premixed flame in a micro combustor. Int. J. Hydrogen Energy 36(21), 13838–13849 (2011)

    Google Scholar 

  • Wang, J., Yu, S., Zhang, M., Jin, W., Huang, Z., Chen, V., Kobayashi, H.: Burning velocity and statistical flame front structure of turbulent premixed flames at high pressure up to 1.0 MPa. Exp. Therm. Fluid Sci. 68, 196–204 (2015)

    Google Scholar 

  • Yaldizli, M., Mehravaran, K., Mohammad, H., Jaberi, F.: The structure of partially premixed methane flames in high-intensity turbulent flows. Combust. Flame 154(4), 692–714 (2008)

    Google Scholar 

  • Zabetakis, M.: Flammability characteristics of combustible gases and vapors. U.S. Bureau of Mines. Bulletin 627 (1965)

Download references

Acknowledgements

This study was conducted with the support of NSF and DOE under Grant Number CBET-1258581. The authors would also like to thank the Texas Advanced Computing Center at the University of Texas-Austin and the Institute for Cyber-Enabled Research at Michigan State University for providing high performance computational resources.

Funding

This study was funded by NSF and DOE under Grant Number CBET-1258581.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to AbdoulAhad Validi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Validi, A., Schock, H. & Jaberi, F. Turbulence–Combustion Interactions in Premixed and Non-premixed Flames Generated by Hot Active Turbulent Jets. Flow Turbulence Combust 106, 849–880 (2021). https://doi.org/10.1007/s10494-020-00199-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-020-00199-x

Keywords

Navigation